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Abstract

Human-induced climate change is leading to a warming Earth, resulting in more frequent
and intense temperature extremes. Daily temperature extremes can be defined following
various approaches, with relative percentile-based thresholds being a common method.
In this master thesis I am exploring spatiotemporal heatwaves across the seasonal cycle
derived from daily temperature extremes, emphasizing the critical role of the extreme
threshold chosen in their definition.

To investigate the sensitivity of heatwave characteristics to the extreme threshold defini-
tion, I focus on the approach utilizing a so-called moving threshold. This method involves
a 31-day running window to increase the sample size for percentile calculations as well as
an additional 31-year running window to account for the impact of global warming. It is
recognized that the usage of a seasonal running window may introduce biases in threshold
exceedances. To address this issue, Brunner et al., 2024 proposed a simple bias-correction
method, involving the removal of the mean seasonal cycle before percentile threshold
calculation, which I will also use here to explore effects on downstream impact metrics.

I focus on the 99th percentile as threshold and show the potential for a significant bias in
the extreme frequency, exceeding 50% in certain regions according to 5 selected CMIP6
models. My findings further reveal that without bias-correction, this also leads to a
substantial underestimation of derived heatwave properties, in particular area, duration,
and magnitude. For one ensemble member of the ACCESS-CM2 model, the difference in
heatwave area can reach up to 40%, when comparing biased and corrected results for the
100 biggest events in the period 1960-1990.

A statistical analysis of 5 ensemble members of the ACCESS-CM2 model shows that
changes in heatwave properties are statistically significant when the bias-correction method
is not applied. When defined relative to a future climate, simulated heatwaves show no
significant changes unless no proper bias-correction method is employed.

The results of my master thesis contribute to a better understanding of the implications
of using a seasonally running window on heatwave characteristics, providing valuable
insights for future climate projections. I emphasize the importance of adopting appropriate
methods and bias-correction techniques to enhance the accuracy of temperature extremes
in the context of ongoing climate change.
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Kurzfassung

Der vom Menschen verursachte Klimawandel führt zu einer globalen Erwärmung und
damit zu häufigeren und intensiveren Temperaturextremen. Tägliche Temperaturextreme
können nach verschiedenen Ansätzen definiert werden, wobei sogenannte Schwellenwerte
auf der Grundlage relativer Perzentile eine gängige Methode sind. In dieser Masterarbeit
werde ich Hitzewellen, die in Raum und Zeit verbunden sind, im Verlauf des saisonalen
Zyklus untersuchen, wobei sich diese aus täglichen Temperaturextremen ableiten lassen.
Die genaue Definition der Schwellenwerte spielt dabei eine wesentliche Rolle.

Um die Sensitivität auf abgeleitete Metriken von Hitzewellen gegenüber der Definition
des Extremschwellenwertes zu untersuchen, verwende ich den Ansatz von sogenannten
beweglichen Schwellenwerten. Diese Methode umfasst ein gleitendes Fenster von 31 Tagen,
um die Stichprobengröße für Perzentilberechnungen zu erhöhen, sowie ein zusätzliches
gleitendes Fenster von 31 Jahren, um den Einfluss der globalen Erwärmung zu berücksichti-
gen. Es wird gezeigt, dass die Einführung eines gleitenden Fensters über den saisonalen
Zyklus zu einem Bias bei der Überschreitung von Schwellenwerten führen kann. Um dieses
Problem zu lösen, schlugen Brunner et al., 2024 eine einfache Bias-Korrekturmethode vor,
die die Entfernung des mittleren saisonalen Zyklus vor der Berechnung der Schwellenwerte
beinhaltet. Diese Methode verwende ich im Zuge meiner Masterarbeit, um Auswirkungen
auf abgeleitete Metriken von Hitzewellen zu untersuchen.

Ich verwende das 99. Perzentil als Schwellenwert und illustriere das Potenzial für einen
signifikanten Bias in der Häufigkeit von Extremen, der in bestimmten Regionen laut
5 ausgewählten CMIP6-Modellen über 50% liegt. Meine Ergebnisse zeigen außerdem,
dass ohne Anwendung der Biaskorrektur eine erhebliche Unterschätzung abgeleiteter
Eigenschaften von Hitzewellen auftritt, insbesondere in Bezug auf Fläche, Dauer und
Intensität. Für ein Ensemblemember des globalen Klimamodells ACCESS-CM2 kann
die Differenz in der Fläche von Hitzewellen bei Vergleich der biaskorrigierten und nicht
biaskorrigierten Ergebnisse für die 100 größten Ereignisse im Zeitraum 1960-1990 bis zu
40% betragen.

Eine statistische Analyse von 5 Ensemblemitgliedern des ACCESS-CM2 Modells zeigt,
dass Änderungen in den Eigenschaften von Hitzewellen statistisch signifikant sind, wenn
die Biaskorrektur nicht angewendet wird. Nur wenn eine geeignete Methode zur Bi-
askorrektur verwendet wird gibt es keine signifikanten Veränderungen von projizierten
Hitzewellen, wenn sie relativ zur Zukunft definiert sind.
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Kurzfassung

Die Ergebnisse meiner Masterarbeit tragen dazu bei, ein besseres Verständnis der Aus-
wirkungen saisonaler gleitender Fenster auf die Eigenschaften von Hitzewellen zu erlangen
und liefern wertvolle Erkenntnisse für zukünftige Klimaprojektionen. Die Existenz eines
systematischen Bias in der Diagnostik zukünftiger Hitzewellen über den saisonalen Zyklus
hinweg wurde bereits von Brunner et al., 2024 nachgewiesen, wobei meine Arbeit ins-
besondere die Auswirkungen des Bias auf zukünftige Veränderungen von Hitzewellen zeigt.
Zudem betone ich die Bedeutung der Anwendung geeigneter Methoden zur Biaskorrektur,
um die Genauigkeit von Temperaturextremen im Zusammenhang mit dem aktuellen
Klimawandel zu verbessern.
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1. Introduction

1.1. Heatwaves and their driving mechanisms

The term “extreme” denotes the outermost (lat. extremus) manifestations under certain
conditions. An extreme weather/climate, as defined by the Intergovernmental Panel on
Climate Change (IPCC), is an event that is rare at a specific location and season. These
extremes can manifest in various ways including extreme temperature events, intense
precipitation events, droughts, hurricanes and other forms of extreme weather. One
type of extreme temperature events are heatwaves, which are generally defined as several
consecutive days with temperatures exceeding a certain threshold (Perkins et al., 2012),
affecting a specific area. In this context heatwaves have a special role, because such events
can range from few days up to several weeks, thus acting both as weather and climate
extreme (Kirch et al., 2005).

This period with persistent hot conditions is often related to the large-scale dynamics,
corresponding to a quasi-stationary high-pressure system. Even though the dynamical
drivers can vary locally, typically clear sky conditions related to the subsiding motions con-
nected to the high-pressure system are contributing to an increased amount of shortwave
radiation reaching the surface (Pfahl et al., 2012). Beside land-atmosphere feedbacks, like
feedbacks with soil moisture, which are also an important factor for the amplification
of heatwaves (Sillmann et al., 2017), anomalies in the atmospheric circulation are the
primary driving factors. When talking about circulation anomalies, specifically in the
extratropical region, the literature often refers to the term “atmospheric blocking” or
“blocking highs” (Zschenderlein et al., 2018), characterized by persistent anticyclones
that interrupt the usual west-to-east flow of the atmosphere. Apart from the impact on
near-surface-temperatures trough anomalies in the surface radiation budget, the anti-
cyclonic circulation also affects temperature advection. This connection between warm
temperature extremes and blocking patterns should not be neglected, especially with
respect to global warming, even if other physical processes, or even their combination can
also play a crucial role.

The combination of multiple drivers leading to significant impacts is referred to as a
compound event (Zscheischler et al., 2018). Although we do not fully understand some
single driver processes in our climate system, it is essential to better understand the
interplay of physical mechanisms in generating heatwaves. Improving the understanding
of these processes will contribute to more accurate representations of weather and climate
extremes simulated by climate models (Sillmann et al., 2017).
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1. Introduction

1.2. Heatwaves and their linked impacts

Nowadays an increasing number of people are experiencing warmer temperatures, for this
reason heatwaves have drawn considerable attention from a variety of research disciplines,
as well as from the general public. Since heatwaves develop jointly in space and time it is
particularly important to investigate different characteristics of heatwaves, because such
events can have severe implications across various sectors. For example, the duration
of heatwaves strongly influences the impact on natural ecosystems and human health,
because it determines if an affected system can recover or not. In combination with the
spatial component, heatwaves also cause adverse effects on agriculture and infrastructure,
leading to strong economic losses. A representative example is the high mortality rate
during the 2003 European heatwave, exceeding 70.000 (Black et al., 2004).
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Figure 1.: Global daily surface air temperature (°C) from 1 January 1940 to 30 September
2023, plotted as time series for each year. 2023 is shown as thick red line, other years are shaded
according to the respective year, from blue (1940) to red (2023).

More recent heatwaves as those that occurred in 2023 (Schäfer et al., 2023) have again set
new temperature records with July being the hottest month ever recorded, as shown in Fig.
1. Additionally, 2023 was the hottest year on record, 1.48°C warmer than the pre-industrial
level (https://climate.copernicus.eu/global-climate-highlights-2023). Beside
global warming, climate change may also cause changes in the jet stream probably
influencing the persistence of heatwaves. The development of these time series provides
information about the future course of global surface air temperatures, implying that
future warming strongly depends on future emissions, outlined in section 1.6.

2

https://climate.copernicus.eu/global-climate-highlights-2023


1.3. Changes in heatwave properties

1.3. Changes in heatwave properties

As described in section 1.2, human-induced climate change leads to a warming Earth
which could consequently also lead to more intense and frequent heatwaves affecting
the environment and society. This assumption has been investigated many times, as for
example by Perkins-Kirkpatrick et al., 2020, who found that since the 1950s heatwaves
have increased in their frequency, duration and intensity. This study highlights not only
a positive, but also an accelerating trend in the presence of anthropogenic climate change.
More recently Russo et al., 2023 showed that heatwaves from 1950-1985 intensified, be-
coming 10 times more frequent and three times more intense in 1986-2021. Moreover,
they emphasize the crucial role of metrics, advocating for a heatwave intensity measure
based on cumulative indices to facilitate comparisons across events of varying durations.

The changes in these properties have their origin in changes in the distribution of
temperature extremes. Fig. 2 demonstrates that extreme temperatures, represented by
the two ends of the distribution, can change due to a shift in mean temperatures or a
change in the variability. A shift in the mean implies more hot extremes at the right end
of the distribution, while a change in the variability can lead to more extremes in both
directions.
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Figure 2.: Schematic showing changes in extreme temperature. The gray curve represents the
current climate, while the black dashed/dashed-dotted lines illustrate a respective shift. Adapted
from Figure SPM.3 of IPCC (2012).
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1. Introduction

Another study by Perkins et al., 2012 presented global changes in heatwaves using three
different definitions and characteristics. Based on observational records from 1950-2011
(HadGHCND), all definitions show positive trends per characteristic, despite different
quantitative results. Nevertheless, given the inconsistency in the definition of heatwaves,
it has been difficult to document their changes at the global scale. Most publications
studying heatwaves state that there is no universal definition to measure these events,
making an exact comparison of existing results quite difficult (Perkins, 2015).

4



1.4. Defining heatwave events

1.4. Defining heatwave events

Indeed, there is a strong sensitivity of heatwave characteristics to the extreme threshold
definition. In the absence of a universal definition of a heatwave, various approaches are
used to define such temperature extremes. These are generally based on the determination
of relative (e.g., 90th percentile) or absolute (e.g., 35°C for a hot day) thresholds. Because
absolute thresholds are purely fixed, they do not account for regional variations in the
temperature distribution. Although percentile-based extreme definitions allow temperat-
ure extremes throughout the year, most studies focus on the warmest period. In order
to set the rarity of an extreme event, exceedances of a chosen percentile value, typically
on a daily bases, are calculated. Selecting for example the 90th percentile means that,
on average, 10% of days in the evaluated period are expected to exceed the calculated
temperature threshold. As base-period, the period used to calculate extreme thresholds,
the Expert Team on Climate Change Detection and Indices (ETCCDI) recommends
to use a 30-year period, for example 1961-1990. There are some studies using longer
base-periods or even shifting periods like Vogel et al., 2020. These shifting periods are
used to understand changes in the climate system and to evaluate heatwave properties
based on extreme events that still happen rarely, even as the climate warms up. This
should answer the question how to define heatwaves in a changing climate. If heatwaves
are defined using a fixed period this results in a strong increase in heatwave area, duration
and magnitude in a warming climate due to the mean warming alone (Zhang et al., 2011).
But if they are defined in a way that accounts for global warming using temporally varying
thresholds, changes are relatively small according to the findings by Vogel et al., 2020.
Therefore, changes in heatwave characteristics strongly depend on the for the analysis
chosen threshold, highlighting the sensitivity of future heatwaves to the extreme threshold
definition.

To increase the sample size used for the percentile calculation the ETCCDI suggests to
use a running window of 5 days. However, many studies on heatwaves, as well as the
often-used Heat Wave Magnitude Index (HWMI) by Russo et al., 2014, use longer windows.
This index describes the intensity of an event by summing up the daily magnitudes for
each day with the duration of a particular heatwave.

Recently, Brunner et al., 2024 showed that using such a seasonal running window leads
to large and systematic biases in threshold exceedances and therefore in the frequency
of temperature extremes. This running window bias originates from seasonally warmer
days dominating the extreme threshold and can vary between seasons, regions, and
datasets. Their results highlight that is particularly important to account for those
biases to correctly interpret the effect on downstream impact metrics like the HWMI.
Disregarding this bias in the temperature extreme frequency could in this case probably
lead to a misinterpretation in the actual magnitude of heatwave events.

5



1. Introduction

1.5. Simulating heatwave events

To gain insights into future changes of heatwaves and other climate extremes, simulations
of global climate models (GCMs) can be a helpful tool. These numerical models use a
discrete representation of the governing equations to simulate and predict the interactions
of various components of the Earth’s climate system including atmosphere, oceans, land
surface and ice.

Due to the inherent variability in the outputs of different climate models, the comparison
of these models becomes essential to improve our understanding of the climate system.
Therefore, the objective of the Coupled Model Intercomparison Project (CMIP) is to
evaluate the performance of climate models and identify uncertainties in GCMs. Since
the release of the CMIP Phase 3 in 2005, many GCMs have provided daily data, which is
key in the measurement of heatwaves. Throughout the evolving phases of the Coupled
Model Intercomparison Project, GCMs have become more complex to better represent
physicals processes and moved towards higher resolution (Eyring et al., 2016). Thus,
in addition to observational and reanalysis data, GCMs represent an important source
of robust and reliable climate information. It is essential to evaluate the model output
of CMIP simulations to measure the representativeness regarding climate extremes in
general. Existing literature has already evaluated CMIP model performance for a range
of climate extremes. Di Luca et al., 2020, for example, showed systematic improvements
in daily temperature extreme errors in CMIP6 compared to CMIP5, linked to increased
horizontal resolution and model biases in land-atmosphere feedbacks (Sippel et al., 2017).

However, the heatwave frequency is systematically underestimated in the past two CMIP
cycles, while heatwave duration and magnitude are both over- and underestimated de-
pending on the region studied. Furthermore, comparisons between CMIP5 and CMIP6
show that improvements in skill for the heatwave metrics evaluated by Hirsch et al., 2021
are marginal.

One way to possibly achieve better skills in simulating heatwaves is the usage of high-
resolution models on a km-scale. Because current global climate models use horizonal grid
spacings of 50-100 km, processes that occur on scales smaller than the resolution need to
be parameterized (i.e. mathematically represented, not simulated by the model). These
parameterizations are the root source of uncertainties in current GCMs (Palmer et al.,
2019). This could affect how heatwaves are represented because important small-scale
processes like surface energy fluxes or soil moisture may not be accurately simulated,
causing systematic biases (Vautard et al., 2013).

Because heatwaves are quite sensitive to internal climate variability, Perkins-Kirkpatrick
et al., 2020 recommend to use an analysis period of at least 3-4 decades to robustly assess
changes in heatwaves. This in turn makes the use of high-resolution models on a km-scale
challenging, as a simulation over such a period requires enormous capacities for data

6



1.5. Simulating heatwave events

storage and computer resources. Despite these facts, climate models are still the key tool
for understanding how climate changes with increased anthropogenic activity. Considering
the noted limitations and evaluating the model’s ability in reproducing historical heatwave
statistics can give us insights into how heatwaves might respond to future projections.

7



1. Introduction

1.6. Future heatwave diagnostics

The current state of research shows, that many studies, such as Rousi et al., 2023, primar-
ily focus on analyzing historical heatwaves events using various data sources, including
models, reanalysis, or observational data. The few existing studies dedicated to investigate
future changes, consistently show that as greenhouse gas levels rise in future climate
scenarios, all temperature extremes, particularly heatwaves, become more intense, frequent
and prolonged. As described in section 1.4, this positive trend highly depends on the exact
definition of temperature extremes. It indeed appears that nearly every climatological
study examining heatwaves utilizes a different metric. The use of fixed thresholds in the
context of future heatwaves seems somewhat eccentric, as the rarity of events loses its
actual meaning.

This highlights the importance of studying future changes of heatwave properties. In
connection with the points already mentioned, the primary objective of my thesis is
to enhance our understanding of how global warming affects heatwaves. In order to
investigate these future changes, I will use a relative, percentile-based threshold that is
adapted to future climate conditions. This makes it possible to examine how selected
CMIP models simulate heatwaves on a global scale. Since the GCMs are free running,
meaning that they are not driven with observational data, the goal of this master thesis is
not to exactly reproduce certain patterns of historical heatwaves, but rather a statistical
analysis of the changes in heatwave properties.

While the impacts of heatwaves are to a certain degree well known, their joint temporal
and spatial dimensions are rarely studied together. Unlike observed heatwaves, projected
changes from climate models face fewer spatial and temporal issues, which simplifies
the 3-dimensional analysis. To identify heatwave objects that are contiguous in space
and time a clustering algorithm can be applied. These so-called connected components
are used to label connected regions in binary images, where in this case the binarity is
determined by exceeding a calculated threshold value on a grid point basis.

To study future changes in heatwaves beyond mean global warming, moving thresholds
that are adapted to the respective climatic conditions can be used. An analysis of future
changes by Schielicke et al., 2022, investigated the processes associated with European
heatwaves. In this study, they dealt with the question whether changes in thermodynamic
or dynamic processes lead to an amplification of heatwaves beyond mean warming. Their
main finding was an amplification of heatwaves due to increased diabatic heating in the
boundary layer. Moreover, increased heating is linked to stronger adiabatic warming
trough enhanced descent of air masses. This is in contrast with the findings of Vogel
et al., 2020 who suggested that changes in dynamics should be less important. More
investigation is needed to assess the findings’ robustness, including other climate models
as demonstrated in this thesis.

8



2. Research questions

The overall goal of my thesis is to improve the understanding of changes in heatwave
properties under climate change. This is accomplished by constructing a Python-based
framework for detecting heatwaves in CMIP6 data. Within this work I address the
following two research questions:

1. What is the effect of a running window when using moving thresholds for
defining heatwaves? The method chosen for calculating thresholds is crucial, as it
influences the number of hot days. The literature review has shown that many existing
studies use relatively large running windows of 15- or even 31-days. When using the 99th
percentile as threshold, one would expect that the overall exceedance frequency is 1%.
However, recently, Brunner et al., 2024 showed that the use of such long running windows
introduces a systematic bias that leads to a striking underestimation in the expected
extreme frequency. Beside that finding they also proposed a simple bias-correction method,
which is also used in this thesis to explore effects on downstream impact metrics.

2. How do different heatwave characteristics respond to global warming in
CMIP6 models? In order to investigate future changes two time periods, one in the past
and one in the future, are compared to each other. Using moving thresholds, the effect
of global warming is considered by defining projected heatwaves relative to the future.
Therefore, it is hypothesized that future heatwaves do not change much. If changes in
heatwave characteristics with fully moving thresholds still occur, they could be related to
physical drivers such as circulation changes or land-atmosphere feedbacks. Depending on
the used definition, I will quantify this potential trend trough some statistical analysis.

Compared to other previous studies, which mostly use only the warmest months for
their analysis, I am going to evaluate the full seasonal cycle allowing heatwaves to occur
throughout the whole year. While heatwaves are often associated with summer months,
in some regions, deviations in the seasonal temperature distribution can take place at
any time of the year, including also winter months. The use of global climate models,
as described in section 1.5, allows a global analysis of heatwaves, whereby this work is
not limited to any specific region. In combination with the first research question, the
corrected and biased results are also compared, whereby it is expected that without
applying the bias-correction, we obtain an underestimation of heatwave properties.
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3. Data and Methods

The first part of this chapter describes the used dataset as well as the justification for the
models I use. Afterwards, the steps for calculating percentile-based thresholds, extreme
frequency biases, and the bias-correction method are explained. The last two sections
include the explanation of the computation of spatiotemporal heatwaves as well as the
analysis of future changes through statistical heatwave properties.

3.1. Climate Models: CMIP6

The analysis is based on simulations of the daily maximum 2m surface air temperatures
(variable tasmax) from the Coupled Model Intercomparison Project phase 6 (Eyring et al.,
2016). The actual data, providing daily maximum temperature for historical and SSP370
scenarios, is available from the ETH Zurich CMIP6 next generation archive (Brunner et al.,
2020) on a common 2.5°×2.5° longitude-latitude grid. The SSP370 scenario represents
a specific socio-economic development pathway defined by a prescribed trajectory of
atmospheric greenhouse gas concentrations, designed to achieve a radiative forcing of 7
W/m² by the year 2100 (Meinshausen et al., 2020).

The data used for the analysis covers two distinct periods. A historical period that spans
from 1850-01-01 to 2014-12-31 and a projection period that extends from 2015-01-01 to
2100-12-31. Combining these two periods results in a continuous, comprehensive dataset
spanning 251 years across 27 distinct climate models on a global scale.

3.1.1. Model selection

Since an analysis of all CMIP6 models would be too time consuming for the scope of
my thesis, I will only use simulations from 5 selected global climate models based on
a simulation skill metric from the International Land Model Benchmarking (ILAMB)
system (Collier et al., 2018), also used by Hirsch et al., 2021. This metric evaluates
the simulation skill between some observational data (O) and the model output (M) for
different heatwave characteristics. The relative bias is calculated as the difference between
the modeled and observed time mean, weighted by a form of the standard deviation of
the observations (for big enough samples):

ϵbias = (M −O)/

⌜⃓⃓⎷ 1

N

N∑︂
i=1

(Oi −O)2 (1)
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3. Data and Methods

The subscript i respectively N in Eq. 1 denotes the number of the heatwave season over
which the calculation is made. For the evaluation of the GCMs, heatwave characteristics
are compared to those derived from observed daily maximum temperature from the
Berkeley Earth dataset (Rohde et al., 2013). This dataset is available for the years
1950-2014, which results in a total of N = 65 heatwave seasons.

Within the CMIP6 ensemble, the relative skill score evaluates how individual models rank
across several heatwave characteristics and in specific climate reference regions. The BCC-
CSM2-MR model consistently exhibits the lowest skill ranking across multiple regions.
Conversely, the INM-CM5-0 model often has the highest skill for several characteristics
particularly in Eurasian regions. The ACCESS-CM2 model usually falls within a middle
ranking across different regions and characteristics.

To determine the impact of the model resolution, I will also consider a model that was
run at two different resolutions, namely MPI-ESM1-2-HR and MPI-ESM1-2-LR where
HR stands for high-resolution and LR for low-resolution. Finally, I have chosen a set of
five distinct GCMs, ranging in the simulation skill from high to low.

MODEL-ID Native Resolution
[lat x lon] Modeling center

MPI-ESM1-2-HR 192 x 384 Max-Planck-Institute for Meteorology,
Germany

MPI-ESM1-2-LR 96 x 192 Max-Planck-Institute for Meteorology,
Germany

INM-CM5-0 120 x 180 Institute for Numerical Mathematics,
Russian Academy of Sciences

ACCESS-CM2 144 x 192
Commonwealth Scientific and Industrial

Research Organization (CSIRO) and
Bureau of Meteorology (BOM), Australia

BCC-CSM2-MR 160 x 320 Beijing Climate Center,
China Meteorological Administration

Table 1.: Overview of selected climate models. Note that the skill metrics were not calculated
within this thesis, but the results from the study by Hirsch et al., 2021 were used.

One ensemble member is used per model, except for the ACCESS-CM2 model where 5
ensemble members are used. These different realizations of a certain model were generated
by different initial conditions and are used to examine the sensitivity to internal variability
and to test the statistical significance of the calculated results (see section 4.4).
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3.2. Calculation of percentile-based extreme thresholds

3.2. Calculation of percentile-based extreme thresholds

For a (relative) percentile-based approach the Expert Team on Climate Change Detection
and Indices (ETCCDI) recommends to use the 90th percentile of a 30-year period (e.g.
1961-1990) with a 5-day running window (https://etccdi.pacificclimate.org/list
_27_indices.shtml). The percentile method for extreme events is a statistical approach
used to determine thresholds beyond which an event is considered as extreme.

Lyon et al., 2019 found, that using a 5-day window leads to a quite noisy extreme
threshold, with the result that most studies (like Russo et al., 2023) are using longer
windows. Therefore, I adapt the recommended approach by computing the 99th percentile
temperature distribution of each day based on the 31 neighboring days and 31 neighboring
years. Using the 99th percentile, for example, instead of the 90th percentile provides a
more conservative estimate capturing events that are even more extreme, as the higher the
percentile chosen, the more extreme the values it captures. The 31-day running window
is used to increase the sample size for percentile calculations to get smooth extreme
thresholds, while the 31-year running window accounts for the impact of global warming.
This method is also known as moving threshold, because of using a shifted baseline instead
of a fixed baseline as described in section 1.4. As illustrated in Fig. 3 the calculation
involves 31 neighboring days and 31 neighboring years resulting in a total of 31×31 = 961
data points for each grid cell and each day separately.
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Figure 3.: Sample illustration of the calculation for the moving threshold for a grid cell close
to the Austrian-Czech border from INM-CM5-0. The data points shown are the 961 used to
calculate the extreme threshold for 2003-08-08 (thick black dot). The x-axis represents the 31-day
running window, while the small gray dots represent the corresponding climatology over 31 years.
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3. Data and Methods

In the following the calculation of the 99th percentile using a 31-day window is described
as TX99p31w. If one adds an additional running window, as already described before,
the calculation of the daily temperature thresholds can be described by the following
formula:

TX99p31w(d) = Percentile({Ti,j(d)}+15
i,j=−15, 99%) (2)

In Eq. 2 subscript i represents the previous and following 15 days, while subscript j
describes the previous and following 15 years. The moving thresholds are then calculated
for every grid point, every date in the timeseries and for each of the model selected. It
should be noted, that the first and last 15 years of the original timeseries cannot be used
for further analysis, because there is simply no data before 1850 and after 2100 needed
for the threshold calculation.
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Figure 4.: Moving thresholds to compute hot days (orange line). Daily maximum temperature
(black line) for 2003 and 2083 from INM-CM5-0 for a grid cell close to the Austrian-Czech border.

A hot day is then defined as a day that exceeds the 99th percentile distribution as
calculated by Eq. 2. Thereby the threshold of the 220th day of the year 2003 in Fig. 4
(left) corresponds to the 99th percentile from the data basis of Fig 3. The right-hand
side of Fig. 4 is intended for demonstration purposes, whereby the amplitude in the year
2083 is much more pronounced due to global warming simulated by the climate model.
By selecting the 99th percentile one would expect that on average 1% of the data is
exceeding the threshold, representing the extreme end of the distribution of the maximum
temperature. However, this assumption is likely wrong, as will be shown later in this
thesis.
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3.3. Calculation of extreme frequencies and biases

3.3. Calculation of extreme frequencies and biases

Throughout the research phase of this master thesis it was found that a 31-day window
leads to a smoother threshold, but the distribution of extremes is no longer uniform.
Consequently, introducing a seasonal running window may result in a bias in the threshold
exceedances, depending on the used window size. To investigate this possible bias, one
can as a first step calculate the extreme frequency as the fraction of days exceeding the
extreme threshold in a given period in percent:

f(p, w) =
xexceed(p,w)

xbase
× 100% (3)

with p indicating the percentile and w the window size. In my case p = 99 and w = 31. For
example, the period 1960-1990 can be used as a baseline. Based on Brunner et al., 2024
results, a bias in the extreme frequency is expected, therefore I introduce the expected
frequency which is per definition 1% for the 99th percentile. However, by using a 31-year
window the data is never fully in-sample, resulting in the fact that the actual expected
frequency is never exactly 1%.

Based on the extreme frequency one can calculate the relative frequency bias, which
is defined as the actual extreme frequency (as defined by Eq. 3) minus the expected
frequency, divided by the expected frequency in percent:

f ′(p, w) =
f(p, w)− (100− p)

100− p
× 100% (4)

with p and w again indicating the percentile respectively the window since. An analysis
on grid point basis makes it also possible to investigate the spatial distribution of relative
frequency biases, discussed in section 4.2. Note that Eq. 4 is one of the key points of the
study by Brunner et al., 2024, whereby I am going to use this approach to show effects
on downstream impact metrics such as the area of heatwaves.
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3. Data and Methods

3.4. Bias correction: Removing the mean seasonal cycle

To address the issue described in section 3.3, Brunner et al., 2024 also proposed a simple
bias-correction method, involving the removal of the mean seasonal cycle before percentile
threshold calculation, which is also used here. The mean seasonal cycle is calculated using
a 31-year running window on a day of the year basis for each grid cell:

T (d, y) =
1

31

i=15∑︂
i=−15

T (d, yi) (5)

After calculating the mean season cycle for each day of the historical and future period,
the mean seasonal cycle, as calculated in Eq. 5, is subtracted from the daily maximum
temperatures at each grid cell resulting in daily anomalies:

Tanom(d, y) = T (d, y)− T (d, y) (6)

Based on the anomalies, calculated by Eq. 6, the extreme thresholds are computed again
by using the method already explained in section 3.2.
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Figure 5.: Applying the bias-correction to calculate moving thresholds (orange line). Anomalies
of the daily maximum temperature (black line) for 2003 and 2083 from INM-CM5-0 for a grid
cell close to the Austrian-Czech border.

This solution has already been suggested by Folland et al., 1999, although they did
not explain the reason for their recommendation. The interaction between the running
window and the seasonal cycle may explain why grid cells with a pronounced seasonal
cycle tend to exhibit a relatively high bias. By taking seasonal variations into account,
I allow the use of longer window sizes without introducing substantial biases into the
extreme frequency. Since Brunner et al., 2024 have shown a general reduction in the
relative frequency bias using the ERA5 and CMIP6 dataset, it can generally be assumed
that this approach can also be used in my case.
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3.5. Spatiotemporal heatwaves

3.5. Spatiotemporal heatwaves

To compute spatiotemporal heatwaves, I will apply a three-dimensional clustering al-
gorithm to identify events that are continuous in space and time over both the land and
the ocean. This method is essential for visualizing contiguous regions with temperatures
above a defined threshold, making it easier to quantify the spatial distribution of certain
grid cells that are influenced by a heatwave. The clusters are computed using the connec-
ted components function cc3d in Python (https://pypi.org/project/connected-com
ponents-3d/). The core of the package uses a variant of the two-pass method proposed
by Rosenfeld et al., 1966, which was originally developed for image processing to identify
and label connected regions in a 2D binary image. The algorithm is extended to work
in 3D, which allows me to consider the temporal evolution of already labeled patterns,
supporting the exploration of spatiotemporal heatwaves. Additionally, my co-supervisor
(Lukas Brunner), has added a component to the version of cc3d that I use, addressing the
issue where the original algorihm cannot correctly handle edge crossings on the latitude
(e.g connected components that extent over 180◦W/180◦E).
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Figure 6.: Connected components for the ACCESS-CM2 model for 10-07-1960. Biased case
(left) and corrected case (right).

The percentile-based thresholds as calculated in section 3.2 are not directly used for the
labeling routine, but rather the deviation from the threshold, here defined as the so-called
exceedance. This exceedance can in principle be interpreted as a binary code: If the daily
maximum temperature is greater than the computed grid cell threshold the value is set
to 1, indicating the occurrence of a heatwave, otherwise it is zero. Each label in Fig. 6 is
representing a heatwave, whereby in the corrected case 1.3% of all grid cells are marked
by a heatwave event.

After clustering single hot days into spatiotemporal patterns, only the 100 largest events
in a past (1960-1990) and a future period (2050-2080) are used for further analysis. Thus,
by studying the 100 biggest events, I target the largest and potentially most impactful
heatwaves, but can also already explain a large part of the original distribution containing
several ten thousand single events.
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3. Data and Methods

3.6. Statistical heatwave characteristics

After calculating the spatiotemporal patterns as described in section 3.5, the heatwave
events are characterized by their area, duration and magnitude. To estimate the heatwave
area (HWA) I am counting the grid cells that are affected by a heatwave over the entire
duration of the event. Due to the longitudinal convergence towards the poles, the grid
cells vary in size, which leads me to consider area weighting. By using the regridded cell
area available from the model output, I can directly calculate the heatwave area in km² if
the size and number of the grid cells influenced by a heatwave are known. Since I am
considering the summed area over the duration in days, HWA consequently receives the
unit km² day.

The heatwave duration (HWD) is the time period of all cells contributing to the heatwave.
The duration starts when a label appears for the first time and ends when the label has
completely disappeared again. In addition, each grid cell at each timestep has a certain
threshold exceedance. The area weighted sum of this exceedances over the entire duration
of a heatwave event results in the heatwave magnitude (HWM), describing the intensity
or severity of an event.

To investigate future changes and to study the impact of the bias-correction, for each
selected model two different time periods and the difference in the biased and corrected
data are analyzed. The characteristics of heatwaves are presented using their distribution
function in form of histograms based on the 100 largest evenzs, while the changes can be
investigated using various statistical approaches.

3.6.1. Calculating the correlation coefficient

The Person correlation coefficient (PCC) is a correlation coefficient that measures the
linear correlation between two sets of data. It relies on the assumption of a normal
distribution for both variables considered. Since a non-normal distribution could lead to
an overestimation or underestimation of the relationship between the variables, I assume
that the data is at least close to a normal distribution. The Pearson correlation coefficient
is calculated as follows:

rxy =

∑︁n
i=1(xi − x̄)(yi − ȳ)√︁∑︁n

i=1(xi − x̄)2
√︁∑︁n

i=1(yi − ȳ)2
(7)

Where n is the sample size, xi and yi are the individual sample points of the two
variables and x̄ and ȳ are the corresponding sample means. The right-hand side of Eq.
7 equals the ratio between the covariance of the two variables and the product of their
standard deviations. The correlation coefficient ranges from -1 to 1, thus offering various
interpretations, as outlined in Table 2.
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3.6. Statistical heatwave characteristics

Correlation Interpretation
0.90 – 1.00 (-0.90 – -1.00) Very high positive (negative) correlation
0.70 – 0.90 (-0.70 – -0.90) High positive (negative) correlation
0.50 – 0.70 (-0.50 – -0.70) Moderate positive (negative) correlation
0.30 – 0.50 (-0.30 – -0.50) Low positive (negative) correlation
0.00 – 0.30 (0.00 – -0.30) Negligible correlation

Table 2.: Interpretation of the correlation coefficient (Mukaka, 2012).

This statistical parameter is used to better understand the correlation between the
heatwave duration (HWD) and the heatwave area (HWA) as well as their three-dimensional
relationship. By considering two different time periods, as well as a corrected and a biased
version of the results, I compute the following four correlations for each model selected:

1. r(HWDcorrected−past, HWAcorrected−past)

2. r(HWDbiased−past, HWAbiased−past)

3. r(HWDcorrected−future, HWAcorrected−future)

4. r(HWDbiased−future, HWAbiased−future)

3.6.2. Permutation tests

To quantify significant changes of heatwave characteristics I perform a permutation test
and compare the biased and the corrected case. This permutation test is a non-parametric
statistical test that assesses the significance of an observed effect by randomly permuting
the data and recalculating the test statistic multiple times to build a null distribution.
It provides a way to test hypotheses without making assumptions about the underlying
distribution of the data. With the help of this methodology, I want to answer the question
whether the means of two distributions are statistically significantly different from each
other. As null hypothesis, the hypothesis stating that there is no statistical difference,
I assume that the difference in the mean values of heatwaves characteristics from the
future period minus the historical period of the largest 500 heatwaves (100 x 5 members,
as described in section 3.1.1) is not different from zero. Additionally, the statistic of
the original data is compared to the null distribution to determine the p-value. A small
p-values suggests that the observed results are unlikely to have occurred if the null
hypothesis were true, leading to the rejection of the null hypothesis and suggesting that
there is statistical significance in the difference being tested. On the other hand, a large
p-value suggests that the observed results are plausible under the null hypothesis, and
there is insufficient evidence to reject it.
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4. Results and Discussion

In this chapter, I present and discuss the results derived from my analysis. It is organized
as follows: In section 4.1 I analyze the percentile-based extreme frequencies and show
the effect of using a bias-correction method on a grid point basis. In section 4.2 this is
expanded to a global level. Section 4.3 investigates the effect of using moving thresholds to
define heatwaves in a future climate. The chapter concludes by evaluating the statistical
significance of using a bias-correction method for its effects on downstream impact metrics.

4.1. Percentile-based extreme frequencies

This section demonstrates that a running window for percentile-based threshold calcula-
tions introduces systematic biases. This leads to a striking underestimation of the extreme
frequency, depending on the window size used (Brunner et al., 2024). By applying the
bias-correction method explained in section 3.4, one cannot fully eliminate the bias, but
at least reduce it substantially. Note that in the following only two of the five models are
compared directly with each other, namely ACCESS-CM2 and INM-CM5-0, as these two
models show the greatest differences in the simulated seasonal cycle. The results of the
other models can be found in the Appendix (see A).

4.1.1. Biased extreme frequencies

The left panel of Fig. 7 shows seasonal variations in the threshold exceedances for a
selected grid cell in the Central Atlantic near the West African coast for two different
GCMs. From this view it is not really clear which threshold line corresponds to which
individual year, essential for the exceedance to define a hot day. By using a 31-year
moving threshold, there is not just one threshold line, but 31, one for each year. Therefore,
I computed the monthly averaged frequencies using daily exceedances grouped by all
months. The right panel of Fig. 7 shows in general an underestimation in the monthly
averaged frequencies. Particularly the ACCESS-CM2 model shows monthly averages of
0% (May, July, August, October, December) leading to a mean frequency of 0.20%. This
implies that in all of these months in the period 1960-1990 not a single day was exceeding
the calculated extreme threshold.
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Figure 7.: Daily threshold exceedances and monthly averaged frequencies at a selected grid cell
(lat = −1.25◦, lon = 358.75◦) from the ACCESS-CM2 (top) and INM-CM5-0 (bottom) model for
the biased case. Each black line corresponds to an individual year in the period 1960-1990 while
each red line represents the corresponding threshold. The mean frequency is 0.20% respectively
0.57%.

By analyzing the bottom row of Fig. 7, one can see that months with a strong seasonal
temperature gradient are the drivers of the underestimation of the expected extreme
frequency. In this case, it is particularly the months of June, July and August that
show a significant underestimation. Against expectations, this striking underestimation
of threshold exceedances may seem surprising. The 31-day window used to calculate
percentile-based thresholds is symmetric and captures both seasonally colder and warmer
values. This balance is expected to result in a smooth extreme threshold, exceeded
for 1% of the days across the seasonal cycle and globally. Brunner et al., 2024 have
highlighted that this expectation is incorrect, because the threshold is typically defined
using a high percentile rather than the mean of the underlying distribution. Therefore,
the threshold is dominated by the seasonally warmer days in the window. If there is a
strong gradient in the seasonal cycle, it gets significantly harder for the central day to
exceed the threshold. Due to the fact that the calculated threshold is actually too high,
we experience a systematic underestimation of the exceedance frequency.
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4.1. Percentile-based extreme frequencies

4.1.2. Bias-corrected extreme frequencies

The bias-correction method seems to work quite well for INM-CM5-0 while for ACCESS-
CM2 it reduces the bias only slightly for the selected grid point here. The mean frequency
for the ACCESS-CM2 model is only increased from 0.20% to 0.46%. As already discussed,
strong variations in the seasonal cycle create a bias in the extreme frequency. A closer look
at the top row of Fig. 8 shows that although the mean seasonal cycle has been removed, a
residual gradient still remains within the seasonal cycle. Particularly noticeable is that in
the monthly average, there are still months with an exceedance frequency of 0% (July and
October). This is probably due to changes in the internal day-to-day variability (black
lines are further apart) leading to a "curvy" threshold and therefore to a substantial bias
and a failure to reach the expected exceedance frequency.
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Figure 8.: Daily threshold exceedances and monthly averaged frequencies at a selected grid cell
(lat = −1.25◦, lon = 358.75◦) from the ACCESS-CM2 (top) and INM-CM5-0 (bottom) model for
the corrected case. The mean frequency is 0.46% respectively 0.98%.

Brunner et al., 2024 identified a number of errors due systematic running window bias.
Especially when comparing neighboring grid cells spatial inhomogeneities can occur
from differences between regions with strong and weak biases. This leads to an unequal
distribution of extremes between different regions. They also found that the inhomogeneity
is generally increasing with increasing percentile and window size, with differences in my
case potentially exceeding 40%.
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4. Results and Discussion

The bottom row of Fig. 7 shows the same case as in Fig. 8, highlighting the benefit of
removing the mean seasonal cycle before calculating the percentile-based thresholds. For
the selected grid cell in the Central Atlantic the mean frequency for the INM-CM5-0 model
increased from 0.57% to 0.98% which means that there is virtually no bias anymore. For
this reason, it is presumed that the bias-correction generally performs equally effectively
on a global scale. To really asses the quality of the bias-correction, this assumption is
examined in more detail in the following section 4.2.

As another source of error, Brunner et al., 2024 identified artificial dataset differences that
arise due to differences in the spatial distribution of biases between datasets. Because the
GCMs I am using misrepresent to seasonal cycle to a certain extent (e.g. compared to
ERA5), respectively simulate it differently, the differences in the extreme frequency can
be very pronounced (compare left and right panels of Fig. 8). However, by applying the
bias-correction method one can show the convergence of the extreme frequency to the
expected extreme frequency for all models on a grid point basis (see A, Fig. 26 and 27).
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4.2. Relative frequency bias

4.2. Relative frequency bias

This section deals with the relative frequency bias which is defined as the deviation from
the expected exceedance frequency. The left column of Fig. 9 shows the full spatial
distribution of the relative frequency bias averaged over all seasonal cycles of the period
1960-1990 for three different models. Locally this bias can exceed -50%, depending on the
used model.

180°W 120°W 60°W 0° 60°E 120°E 180°E

60°S 60°S

30°S

0°

30°N

60°N 60°N

(a) ACCESS-CM2: biased

180°W 120°W 60°W 0° 60°E 120°E 180°E

60°S 60°S

30°S

0°

30°N

60°N 60°N

(b) ACCESS-CM2: corrected

180°W 120°W 60°W 0° 60°E 120°E 180°E

60°S 60°S

30°S

0°

30°N

60°N 60°N

(c) INM-CM5-0: biased

180°W 120°W 60°W 0° 60°E 120°E 180°E

60°S 60°S

30°S

0°

30°N

60°N 60°N

(d) INM-CM5-0: corrected

180°W 120°W 60°W 0° 60°E 120°E 180°E

60°S 60°S

30°S

0°

30°N

60°N 60°N

(e) MPI-ESM1-2-HR: biased

180°W 120°W 60°W 0° 60°E 120°E 180°E

60°S 60°S

30°S

0°

30°N

60°N 60°N

(f) MPI-ESM1-2-HR: corrected

50 40 30 20 10 0
Relative frequency bias [%]

Figure 9.: Biases in the frequency of temperature extremes in ACCESS-CM2 (a, b), INM-CM5-0
(c, d) and MPI-ESM-HR (e, f). Spatial distribution of biases in the frequency of daily maximum
temperatures based on exceedances of the 99th percentile using a moving threshold in the period
(1960-1990). (a, c, e) without bias correction and (b, d, f) with bias correction.
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4. Results and Discussion

In the period 1960-1990 the mean bias lies between approximately -27% and -50%,
depending on the climate model considered. After removing the mean seasonal cycle, the
frequency bias for the annual, global mean case is substantially reduced (see Table 3). As
a consequence, the spatial inhomogeneity is also reduced, although some patterns with
systematic bias still remain. In the best-case scenario, however, we would expect that the
applied method is fully eliminating the bias, reducing the relative frequency bias to 0% in
the global distribution. Even when considering the relative frequency bias for all selected
models (see Table 3) none of them allows a complete reduction, with the BCC-CSM2-MR
model having the highest bias values for both cases.

MODEL-ID without biascorrection [%] with biascorrection [%]
INM-CM5-0 -36.04 -4.36

MPI-ESM1-2-HR -28.68 3.28
MPI-ESM1-2-LR -30.59 4.50
ACCESS-CM2 -26.87 3.9

BCC-CSM2-MR -50.03 -9.18

Table 3.: Relative frequency biases for the global mean case, averaged over the period 1960-1990.

After Brunner et al., 2024 found that in the ERA5 dataset, the 1961-1990 mean, global
mean, relative frequency bias can be reduced from -10% to -0.5%, the remaining bias is
likely caused by the methodology used to calculate the extreme thresholds. While they
defined extreme thresholds over a fixed period of 30 years, I am using shifting periods as
explained in section 3.2. This approach may lead to a discontinuity in the exceedances and
is in the following referred to as the “out-of-sample problem”. Since I am using running
yearly windows, the data used is per definition never fully in-sample. Therefore one would
never expect exactly 1% exceedance rates even when removing the mean seasonal cycle
first. Specifically, being out-of-sample tends to result in extreme frequencies higher than
1%. If the correction manages to completely remove the seasonal cycle this ends up in
an overestimation of the exceedance frequency, while places where some seasonal cycle
remains still show a residual bias (see Fig. 9 b, d, f). The calculated global mean bias is
then the average over these regions and can of course vary between models. The residual
bias due to the out-of-sample problem remains uncorrected in the following, but it is
acknowledged and accounted for in the interpretation of the results since it can also affect
heatwave characteristics.
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4.2. Relative frequency bias

When contrasting the findings of section 4.1 and 4.2, particularly when comparing
Fig. 9 (b) and (d), (f), one might wonder why the bias correction for the INM-CM5-0
and MPI-ESM-HR model works reasonably good in the Central Atlantic, while for the
ACCESS-CM2 model, this is not the case. Initially without applying the bias-correction
method, the ACCESS-CM2 model exhibits a stronger relative frequency bias compared
to all other models in this region. Due to the change in the internal variability the INM-
CM5-0 model simulates only weak changes in norther summer, while for ACCESS-CM2
the changes are quite strong leading to a "bend" in the threshold and consequently to a
bias. Similar effects are simulated for the INM-CM5-0 model for the southeast pacific
region. Together with the effect of the out-of-sample problem, the bias-correction method
used may reach its limits in those cases, but only on regional scale.

What all of the analyzed models have in common, is that in the subpolar ocean on the
Southern Hemisphere the relative frequency bias can still exceed 10%. In some cases, the
bias even increases for some grid cells although the mean seasonal cycle has been removed.
Examining a grid cell in these regions reveals that the threshold remains relatively flat,
closely aligning with the path of the 0°C isotherm (see left panel of Fig 10). Since there is
no pronounced gradient in the seasonal cycle in this case, there is virtually no systematic
underestimation in the exceedance frequency due to the 31-day running window.
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Figure 10.: Daily threshold exceedances a selected grid cell (lat = −63.75◦, lon = 358.75◦) from
the INM-CM5-0 model with seasonal cycle not removed (left) and with seasonal cycle removed
(right).

During winter in the southern hemisphere, temperatures can be much lower in comparison
with the mean seasonal cycle, which leads to a pronounced amplitude in the anomalies
during this period (see right panel of Fig. 10). This in turn, results in a maximum in the
threshold distribution when the mean seasonal cycle is removed first, accompanied by a
strong gradient leading to an increase in the relative frequency bias.
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4. Results and Discussion

The following two illustrations show a sort of summary of the previous two sections in
form of the seasonal cycle of the mean bias in the northern (see top of Fig. 11) and
southern (see bottom of Fig. 11) hemisphere. On both hemispheres, a clear reduction in
the bias due to the correction is detectable. The striking underestimation of threshold
exceedances leads to a relative frequency bias up to -50% particularly in the transition
seasons. In the summer months of the respective hemisphere, the bias is comparably
small, while according to Fig. 9, the bias still present after the correction occurs in most
cases over oceans.
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Figure 11.: Seasonal cycle of the mean bias on the northern (top) and southern (bottom)
hemisphere. Monthly averages of the relative frequency bias for the multi-model mean in the
period 1960-1990. The red barplots represent the biased results, while the blue barplots represent
the corrected results.
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4.3. Effects of the bias on heatwave properties

4.3. Effects of the bias on heatwave properties

When examining Fig. 6, it seems like that there are more connected components when
using extreme temperature thresholds with applied bias correction. This implies that
there is an underestimation of connected component patterns, potentially resulting in a
general underestimation of heatwave characteristics when no bias-correction is applied.
This hypothesis comes from the theoretical consideration that an underestimation in
the extreme frequency has an effect on derived properties. The patterns in Fig. 6 are
one, but not sufficient, hint that this hypothesis is correct. To proof this assumption, I
do analyze three different heatwave properties as described in section 3.6 for the biased
and the corrected case. In order to proof the effect of moving thresholds, the heatwave
properties of two different periods are compared to each other.

4.3.1. Heatwave Area

The cumulative heatwave area is the area affected by a heatwave over the entire duration
of an event. For example, consider a heatwave that affects 5 mio. km² on the first day, 8
mio. km² on the second day and 10 mio. km² on the third day, then the total area would
be 23 mio. km². The mean cumulative heatwave area of the 100 largest events with
moving thresholds varies between 11.03 and 61.71 mio km² days depending on the model
under consideration. The area for single heatwave events approximately corresponds to
the country size of Algeria or 130 times the area of Austria for the lowest value and
exceeds the size of Asia for the highest value.

Past Future
INM-CM5-0

Biased 11.03 11.45
Corrected 20.86 22.44

MPI-ESM1-2-HR
Biased 16.29 17.48

Corrected 23.44 33.33
MPI-ESM1-2-LR

Biased 38.93 23.90
Corrected 54.44 48.01

ACCESS-CM2
Biased 37.46 16.02

Corrected 61.71 47.18
BCC-CSM2-MR

Biased 17.05 15.53
Corrected 34.83 40.04

Table 4.: Mean heatwave area of the 100 biggest heatwaves in mio. km² days.
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Figure 12.: Area of the 100 biggest heatwaves for INM-CM5-0 (top) and ACCESS-CM2 (bottom).
Note that the histogram was cut off at 100 mio. km² days.

For the INM-CM5-0 model, the mean heatwave area does not show any detectable change
for the two periods under consideration. To a certain extent this is the case both with
and without bias-correction (see Table 4). The change with increasing global mean
temperature is most pronounced for the ACCESS-CM2 model. Of particular interest here
is the fact that the mean cumulative heatwave area decreases in the future period. A
closer look shows that fewer large events but more small events, are simulated.
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4.3. Effects of the bias on heatwave properties

In general, the distributions of the 100 largest heatwaves shown in Fig. 12, illustrates
several smaller and fewer larger heatwaves, whereby, in the biased past period ACCESS-
CM2 simulates much larger heatwaves than for example INM-CM5-0. The assumption
of a decrease in counts with increasing area, is supported by the findings of Zscheischler
et al., 2014, who identified that spatiotemporal (three-dimensional) events exhibit power
law distributions. The differences in the distributions generally indicate a relatively high
intermodel variability (see A Fig. 29).

Even more important are the pronounced differences in the results for the case with and
without applying the bias-correction. Every time the bias-correction is not applied, there
is a significant underestimation of the heatwave area, resulting in differences of 30-60%,
whereby the corrected case is taken as the reference. As suspected, this underestimation of
derived heat wave properties arises from the underestimation of the expected exceedance
frequency. This in turn is due to a systematic bias caused by the interaction of the
seasonal cycle with the 31-day window, explained in detail in section 4.1 and 4.2.
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4. Results and Discussion

4.3.2. Heatwave Duration

Under the settings described in chapter 3, heatwave durations between 1 and almost 60
days are simulated. (see Fig. 13). Many models show a maximum duration, typically
between 50 and 60 days. The mean heatwave duration lies between 11 and 26 days (see
Table 5).

Past Future
INM-CM5-0

Biased 11.32 11.97
Corrected 16.67 17.56

MPI-ESM-1-2HR
Biased 11.97 12.46

Corrected 13.70 17.18
MPI-ESM1-2-LR

Biased 15.59 13.43
Corrected 19.38 19.84

ACCESS-CM2
Biased 18.89 11.50

Corrected 25.90 20.87
BCC-CSM2-MR

Biased 13.35 11.63
Corrected 21.12 21.73

Table 5.: Mean heatwave duration of the 100 biggest heatwaves in days.

Regarding heatwave duration, there doesn’t seem to be any noticeable change for the two
periods studied using the INM-CM5-0 model. Again, this remains somewhat true with
and without bias-correction as the mean change in both cases is approximately 5%. In
alignment with the results for the heatwave area, the ACCESS-CM2 model displays the
most noticeable difference in future changes. In this case, the mean difference without
applying bias-correction equals -39%, whereby a decrease in the duration of heatwaves
is simulated. Whether these changes are statistically significant will be determined in
section 4.4.2. No noticeable changes occur for the duration simulated by MPI-ESM-LR
and BCC-CSM2-MR if the bias-correction is considered (see A Fig. 30). In general,
without the usage of the bias-correction method, we detect an underestimation in the
duration of heatwaves, for the same reason as for the heatwave area. In conclusion, 60%
of the analyzed models show no or only minor future changes in heatwave duration.
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Figure 13.: Duration of the 100 biggest heatwaves for INM-CM5-0 (top) and ACCESS-CM2
(bottom). Note that the histogram was cut off at 60 days.
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4. Results and Discussion

Vogel et al., 2020 also simulated durations between 1 and nearly 57 days, which is in this
case in good agreement with my results. In order to make precise comparisons, however,
one would have to look at the corresponding distribution functions of the model. Their
study on the development on future heatwave for different thresholds is based on the use
of CMIP5 (RCP8.5) models and the 90th percentile for threshold calculation. In addition,
they only used the near-surface air temperature (tas in CMIP5) over land regions and
limited the analysis to the three consecutive warmest months, whereby I am considering
the full seasonal cycle and do not have to limit myself to a heatwave season. All these
circumstances make a direct and exact comparison of the findings difficult, as already
described in section 1.3.

In the following I want to understand to which extent heatwave duration could change
under global warming assumptions. Vogel et al., 2020 related changes in heatwave duration
with moving thresholds to physical drivers of heatwaves such as circulation changes of
land-atmosphere feedbacks. Based on observations Horton et al., 2015 showed a trend in
anticyclones, typically linked to heatwaves in the midlatitudes as described in section 1.1.
While the presence of atmospheric blocking can lead to prolonged heatwaves (Pfahl, 2014),
it is nevertheless difficult to observe changes in atmospheric dynamics using projections
of GCMs (Woollings et al., 2018). Vogel et al., 2020 also indicated that there may be
dynamical changes occurring beyond the scales resolved by present-day climate models.
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4.3. Effects of the bias on heatwave properties

4.3.3. Effect of model resolution

This section describes the effect of the native model resolution for simulating heatwave
events. Therefore, I used a model that was run at two different resolutions, namely MPI-
ESM1-2-HR and MPI-ESM1-2-LR, as described in section 3.1.1. Particularly striking is
the fact that the largest heatwave summed over the duration simulated by MPI-ESM1-2-
LR is approximately 3.7 times larger compared to the high-resolution model. Although
the high-resolution model simulates much larger areas at the beginning of the event, the
duration is much shorter compared to the low-resolution model (see Fig. 14).
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Figure 14.: Spatiotemporal evolution of the 3 largest heatwaves in the period (1960-1990)
simulated by MPI-ESM-HR (thick lines) and MPI-ESM-LR (thin, dashed lines). Largest heatwaves
(1-3) in terms of number of affected grid cells.

MODEL-ID Heatwave 1 Heatwave 2 Heatwave 3
MPI-ESM1-2-HR 2662 2298 1953
MPI-ESM1-2-LR 9972 9014 4320

INM-CM5-0 2880 2105 1862

Table 6.: Three largest heatwaves simulated by MPI-ESM1-2-HR, MPI-ESM1-2-LR and INM-
CM5-0 (as reference). The number of affected grid cells is summed over the entire duration of the
respective heatwave.

These results are merely recorded here and will not be discussed further. The exact cause
is unclear for the time being and requires further research. In any case, the reference model
(INM-CM5-0) shows similar values to the high-resolution model (see Table 6), which
suggests that the effect of model resolution is not negligible. Simulating heatwave events
with GCMs involves several important processes such as radiative transfer processes,
atmospheric dynamcis or land-surface processes, that need to be accurately represented.
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4. Results and Discussion

4.3.4. Correlation of heatwave area and duration

A further analysis of the results from section 4.3.3 demonstrates a significant difference of
heatwave area and duration between the two versions of MPI-ESM1-2 for a larger sample.
Fig. 15 shows the mean heatwave area per day as function of the total duration for the
100 largest heatwaves. It is particulary striking that the correlation for the low-resolution
model is always higher than for the high-resolution model for all cases considered in
section 3.6.1.
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Figure 15.: Correlation of the mean heatwave area per day and duration. The x-axis represents
the duration in days, while the y-axis represents the mean area per day in mio. km².

The correlation coefficient between the mean area per day and the duration of a heatwave
ranging from 0.43 to 0.68 indicates a moderately positive relationship. This suggests that
as the duration of a heatwave increases, there tends to be a corresponding increase in the
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4.3. Effects of the bias on heatwave properties

area affected. While this correlation is not extremely strong, it implies that longer-lasting
heatwaves typically cover a larger geographical area. However, it’s essential to consider
that factors beyond duration alone may influence the extent of the area impacted by
a heatwave due to the complex interplay of the physical drivers. Firstly, atmospheric
circulation patterns, such as persistent high-pressure systems or jet stream ridges can trap
heat over a large area for an extended period, leading to prolonged heatwaves. Secondly,
land surface feedback mechanisms play a key role, as heating of the land surface during a
heatwave can intensify the warming effect by releasing stored heat enhancing evaporation.
Both factors collectively contribute to the simulated correlation between area and duration
of heatwaves.
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4. Results and Discussion

4.3.5. Heatwave Magnitude

The heatwave magnitude is defined as the area-weighted sum of temperature exceedances
over all grid cells affected by a heatwave. The magnitude contains the area, the duration
and the temperature exceedance and therefore summarizes comprehensive risks generated
by heatwaves. With moving thresholds relatively large mean heatwave magnitudes between
147.85 mio. km² days ∆K and 355.25 mio. km² days ∆K are simulated.

Past Future
INM-CM5-0

Biased 180.32 147.85
Corrected 241.46 185.44

MPI-ESM-1-2HR
Biased 195.52 181.41

Corrected 226.82 280.28
MPI-ESM1-2-LR

Biased 240.53 189.40
Corrected 355.25 292.75

ACCESS-CM2
Biased 262.27 176.88

Corrected 323.50 285.37
BCC-CSM2-MR

Biased 181.62 170.98
Corrected 225.90 175.73

Table 7.: Mean heatwave magnitude of the 100 biggest heatwaves in mio. km² days ∆K.

Any distribution of samples in the form of a histogram can also be represented as a
probability density function. Fig. 16 shows the magnitude of the 100 biggest heatwaves
for 2 different models. If those histograms are understood as distribution functions,
determining the differences when using the bias-correction method becomes relatively
easy. Without bias-correction, the probability density is skewed towards smaller heatwave
magnitudes. However, with the application of the bias-correction, although smaller
magnitudes still dominate in terms of count, the distribution shifts, leading to an increased
likelihood of larger magnitudes. This leads to the inverse conclusion that we would expect
more intense heatwaves when applying the bias-correction method, whereas without it,
there is a tendency to underestimate the heatwave magnitude, consistent with the findings
for other heatwave properties. Since the duration of heatwaves is quite similar across
the selection of models when using moving thresholds (see Table 5), the differences in
the heatwave magnitude probably arises from the area and temperature anomaly of the
corresponding label.
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Figure 16.: Magnitude of the 100 biggest heatwaves for INM-CM5-0 (top) and ACCES-CM2
(bottom). Note that the histogram was cut off at 1400 mio. km² d ∆K.

All models show future changes, with these being least pronounced for MPI-ESM-HR and
BCC-CSM2-MR in the biased case. On average, all other models show changes ranging
between 10 and 30%. Additionally, it is noteworthy that all models except MPI-ESM-HR
in the corrected case simulate a decrease in the mean heatwave magnitude. For the
described scenario, an increase from 226.82 mio. km² d ∆K to 280.28 mio. km² d ∆K
is modeled (see Appendix A 4.3.3). However, when considering the other properties
of this scenario (HWA & HWD), one can see that both metrics show a positive trend.
The change in magnitude could potentially be explained by the change in the other two
metrics, although it does not necessarily imply changes in the temperature gradient.
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4. Results and Discussion

At this point it should also be noted that I am only using two different time periods to
identify future changes compared to Vogel et al., 2020 who used different warming levels.
For each model, they identified the year where the warming of a 31-year running window
is closest to global warming levels of +1, +1.5, +2 and +3°C relative to a preindustrial
level of 1871-1890 and used this year as a center for a 21-year warming level time slice.
This approach ensures comparability among warming levels of different models. However,
in my case, due to model variability, the degree of warming may vary between the selected
models. While they found rather constant heatwave magnitudes with moving thresholds
and the distributions for higher warming levels show no substantial changes, in my case,
based on qualitative analysis, there is no clear signal regarding future changes. For this
reason, statistical significance tests will be conducted in the following to shed light on the
matter (see section 4.4.3).
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4.4. Statistical Significance

4.4. Statistical Significance

Since heatwaves are rare events, I also use an ensemble dataset of climate simulations
with 5 ensemble members from the ACCESS-CM2 model to increase the sample size of
heatwave events in a historic (1960-1990) and a future (2050-2080) time slice. Once again,
the 100 largest events for 3 different heatwave properties are analyzed, in this case for 5
different realizations of the same model for the biased and the corrected case.

Since the results of section 4.3 did not always show clear signals with respect to future
changes, a statistical significance test is now used. With the help of permutations tests,
as described in section 3.6.2, I proof the assumption that there is no significant difference
in the mean values of heatwave area, duration and magnitude between a future and a
historical period. By defining projected heatwaves relative to a future climatology, it is
hypothesized that future heatwaves do not change much.

4.4.1. Heatwave Area

Fig. 17 shows the distribution of heatwave area, for the settings described above, in form
of boxplots. The range of the boxplot covers the so-called interquartile range (IQR), which
is the range between the fist (Q1) and the third quartile (Q3), while the whiskers extend
to show the rest of the distribution. Note that the distributions also contain some outliers,
but these have been removed as they are probably artificial products of the labeling
algorithm and no longer allow a physical interpretation. For this reason, the line within
the boxplots also shows the median and not the arithmetic mean of the distribution, as
the mean, which takes into account the value of each datapoint, is sensitive to outliers,
while the median is a more robust measure, as it is less influenced by extreme data points.
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Figure 17.: Area for the 100 biggest heatwaves for each ensemble member of the ACCESS-CM2
model. The red boxplots represent the biased results, while the blue boxplots represent the
corrected results. Historical period (left), future period (right).

For further analysis, the distributions of the ensemble members, shown in Fig. 17, were
merged in order to have a sample size of 500 events for each of the cases considered
(biased-past, corrected-past, biased-future, corrected-future). Note that the underlying
distribution is based on the 100 largest events in each of the 5 ensemble members and
not the overal 500 largest events. Fig. 18 illustrates the merged distributions respectively
the overlap of the two considered time slices. The red and blue line shows the respective
mean value of the overall distribution, whereby in the corrected scenario, it becomes
apparent that these values are closer to each other.
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Figure 18.: Histogram of the heatwave area for all heatwaves and ensembles of the ACCESS-CM2
model. The colors indicate the time period, blue for the historical period, red for the future
period. The biased case on the left and the corrected case on the right.

The used permutation test evaluates the statistical significance by randomly shuffling the
data values. It then compares the test statistic from the original data to the distribution
of test statistics generated from permutations. In both cases, a decreasing change is
detected: Without bias-correction, a statistically significant change is simulated, whereas
with bias-correction the change in the mean is not statistically significant from zero.
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Figure 19.: Results for a permutation test for the null hypothesis that the difference in the mean
heatwave area between a future and a historical period is not different from zero. Biased (left)
and corrected (right).
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4.4.2. Heatwave Duration

The distribution of heatwave duration, under the conditions described in section 4.4,
and as illustrated in Fig. 20, highlights a striking trend: the median of the corrected
cases (blue boxplots) consistently surpasses that of the biased cases (red boxplots). The
underestimation of the heatwave duration in this case is therefore in good agreement with
the results discussed in section 4.3.2.
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Figure 20.: Duration for the 100 biggest heatwaves for each ensemble member of the ACCESS-
CM2 model.

The distributions of the individual ensemble members are again combined and the historical
(blue) and the future period (red) are overlaid (see Fig. 21). Once more, it is evident
that the mean values of the two periods are notably closer to each other in the corrected
scenario, indicating that there are no or only minor future changes when using moving
thresholds for the definition of heatwaves.
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Figure 21.: Histogram of the heatwave duration for all heatwaves and ensembles of the ACCESS-
CM2 model.
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Figure 22.: Results for a permutation test for the null hypothesis that the difference in the mean
heatwave duration between a future and a historical period is not different from zero.

These results are generally in line with the findings of Schielicke et al., 2022. Their study
on European heatwaves in present and future climate simulations used data from model
simulations based on the Community Earth System Model (CESM) Large Ensemble
(CESM-LE) project with 35 ensemble members to study future changes in several European
regions. Their identification of heatwaves is also based on a temperature threshold, but
given by the 90th percentile of the daily maximum temperature from the climate model
output within a 30-day window around the day of interest. In order to identify future
changes, they define heatwaves with respect to the historic climate in the 1991-2000 time
slice and with respect to future climate in the 2091-2100 time slice. In general, they
observed no or only minor differences between general heatwave properties in historic
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and future simulations. In the majority of regions, the observed a typical duration of
less than 10 days, though under certain conditions, it can extend to a maximum of 45
days. Noticeable is that, one of their main findings is that since the method of detection
is percentile-based, the total number of heatwave days is almost identical in both slices.
However, this assumption in my case holds only true if an appropriate bias-correction is
applied, as the results from the permutation test in Fig. 22 show. Again, in both cases, a
decreasing trend is detected, whereby it is much more pronounced for the biased case
as shown by the vertical lines which displays the difference in mean values of heatwave
duration as calculated from the mean values shown in Fig. 21. Again, without bias-
correction, a statistically significant change is simulated, whereas with bias-correction
the change in the mean is not statistically significant from zero, as also indicated by the
p-value.
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4.4. Statistical Significance

4.4.3. Heatwave Magnitude

The magnitude of heatwaves is a good parameter to estimate the future risk of heatwaves,
as it includes all basic characteristics, especially the temperature exceedance, which
defines the intensity of heatwaves events. Using fixed thresholds to define heatwaves, the
magnitude increases proportionally to global mean warming (Vogel et al., 2020). If they
are defined with moving thresholds, as in my case, no changes would be expected.
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Figure 23.: Magnitude for the 100 biggest heatwaves for each ensemble member of the ACCESS-
CM2 model.

The distributions of the magnitude show an underestimation in the biased case, whereby
this can exceed up to 30% for selected ensemble members in the historical period (see left
panel of Fig. 23). In both cases, the mean values show larger differences, whereby the
p-value of the significance test for the corrected case is an order of magnitude smaller
compared to area and duration, indicating little systematic future changes.

According to Vogel et al., 2020, the distributions for higher warming levels exhibit overall
no significant changes. They do also note that for the difference between +3°C and +1°C
warming, two models demonstrate a statistically significant change. In order to estimate
the magnitude of a heatwave, Schielicke et al., 2022 used the percentile-based Heatwave
Magnitude Index (HWMId), defined by Russo et al., 2014. Their comparison of historic
and future distributions of the HWMid reveals that the distributions are primarily shifted
towards higher HWMId, but nearly do not change shape. In certain regions, however,
a broadening of the distribution towards higher HWMId, but also a narrowing away
from higher HWMId was detected. At this point is should be mentioned again that
no bias-correction method was used in both studies, and, as previously mentioned, the
results are not directly comparable for several reasons. Upon further investigation, I
have discerned variations in the magnitudes of derived heatwaves (or general heatwave
characteristics) between the biased and corrected scenarios.
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Figure 24.: Histogram of the heatwave magnitude for all heatwaves and ensembles of the
ACCESS-CM2 model.
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Figure 25.: Results for a permutation test for the null hypothesis that the difference in the mean
heatwave magnitude between a future and a historical period is not different from zero.

Regarding physical concepts of heatwave magnitudes, Zhang et al., 2023 have identified
an upper limit for extreme temperatures over land in mid-latitudes. While mechanistic
drivers such as atmospheric blocking are well known for their ability to raise surface air
temperature (as explained in section 1.1), the limitation of maximum surface temperature
and thus the magnitude of heatwaves requires further investigation. They hypothesized
that convective instability limits annual maximum surface temperature over midlatitudes,
suggesting that the upper bound for surface air temperature should increase approximately
2 times as fast as 500-hPa warming. Considering this finding provides another good
opportunity to estimate how the magnitude in future projections could change.
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5. Conclusion

This thesis studies the changes of heatwave properties under climate change as well as a
systematic bias in future heatwave diagnostics throughout the seasonal cycle. To conclude,
I again explore the two research questions, formulated in chapter 2, by considering the
findings of chapter 4.

1. What is the effect of a running window when using moving thresholds for
defining heatwaves?

In the absence of a universal definition of a heatwave, various approaches are used to define
such temperature extremes. These are generally based on the determination of relative or
absolute thresholds. Thereby, the choice of method for defining thresholds is crucial in
determining hot days. Many existing studies employ large running windows, typically 15
or 31 days, as in my case, when calculating relative percentile-based thresholds to increase
the sample size. Despite the expectation that using the 99th percentile as a threshold
would result in an overall exceedance frequency of 1%, recent research by Brunner et al.,
2024 revealed that such long running windows introduce a systematic bias, leading to a
significant underestimation of the expected extreme frequency, also demonstrated in this
thesis using 5 selected CMIP6 models. The interaction between the running windows and
the seasonal cycle has proven to be the cause of these biases in the temperature extreme
frequency. By using the proposed bias correction method by Brunner et al., 2024, which
includes the removal of the mean seasonal cycle, a reduction of the relative frequency bias
was shown, both for a single grid cell and at global level. This bias can vary depending on
which GCM is considered. Strong variations in the seasonal cycle simulated by a variety
of climate models were shown to be the root source of the underestimation. As climate
models simulate the seasonal cycle differently in some cases, this generally leads to an
enhanced level of intermodel spread.

The method used for bias-correction was able to significantly minimize the bias, although
it could not eliminate it entirely. This behavior arises due to the use of moving thresholds
with shifting periods to define heatwaves relative to a future climate and leads to the
so-called out-of-sample problem. The used approach uses data points outside the period
actually analyzed (in-base period), which means that by construction the exceedance
rate is unlikely to be exactly 1%. The underestimation of the extreme frequency, caused
by the running window bias, is essential, as it can also affect derived metrics such as
heatwave characteristics. This finding not only applies to my master’s thesis but also
extends to future studies and publications within this research field (e.g. for the recent
publication by Luo et al., 2024).
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5. Conclusion

2. How do different heatwave characteristics respond to global warming in
CMIP6 models?

Using different definitions may lead to varying changes in heatwave properties, highlighting
the strong sensitivity of simulated future heatwave properties to thresholds. To explore
future changes, comparisons are made between two periods – one past and one future
– employing moving thresholds to account for global warming effects. In addition, the
differences caused by the running window bias were also investigated, whereby without
applying an appropriate bias-correction method I generally identify an underestimation
of heatwave characteristics.

While Vogel et al., 2020 detected no/minor significant changes in projected heatwaves, if
they are defined relative to a future climatology, I demonstrated that simulated changes
are attributed to the application or neglection of the bias-correction method. The fact
that Vogel et al., 2020 only considered the 3 consecutive warmest months over land regions
has the consequence, that the bias in the extreme frequency does not have such a strong
effect on derived heatwave metrics.

However, in my case the application of the bias-correction method is necessary to retain
the basic idea of moving thresholds. Only when using such a method there is no statistical
significance in the mean change in the characteristics of heatwaves, as demonstrated in
section 4.4.

If changes still occur despite the application of the bias-correction, these can of course be
attributed to changes in non-linear dynamics. For example, warming in certain regions
can cause the jet stream to become weaker and wavier. This causes different weather
patterns to stay longer over the same place, which can possibly influence the duration of
heatwaves. Furthermore, an amplified diabatic heating associated with future heatwaves,
as found by Schielicke et al., 2022, could be explained by an additional drying of the land
surface in future projections, potentially affecting the magnitude of heatwaves.

Summarized it can be said that my master’s thesis underscores the critical role of extreme
threshold selection in characterizing spatiotemporal heatwaves amid a warming planet.
Through a focus on a moving threshold approach and the necessity of bias-correction
techniques, the study reveals significant biases in the extreme frequency and subsequent
heatwave properties. These findings underscore the importance of employing robust
methodologies to ensure accurate temperature extremes analysis in the context of climate
change, offering valuable insights for future climate studies and adaptation strategies.
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6. Outlook

Concerning my master thesis, there exist numerous potential directions for extending the
scope of my work. Therefore, I present a detailed overview of the areas that could be
explored further and require additional study.

To fully understand to the development and persistance of heatwaves, it is necessary
to investigate possible dynamical drivers. A study by Kautz et al., 2022 revealed that
heatwaves often occur in connection with the center of a blocking system, commonly
observed at the mid-troposphere around 500hPa. Since the geopotential at this pressure
level is available as direct model output in CMIP6 models, it could be used to identify
the connection between atmospheric blocking and heatwaves in future projections.

The bias-correction method effectively minimized the bias in the threshold exceedances
but did not fully eliminate it. Primarily because moving thresholds use out-of-base data,
as described in section 4.2. Because the analysis is never fully in-sample I don’t need to
worry about an in-sample/out-of-sample jump as described by Zhang et al., 2005. The
out-out-sample problem even leads to extreme frequencies that are higher than 1%, which
can even lead to a regional overestimation of the extreme frequency when applying the
bias-correction.

The necessity to validate my findings across different climate models underscores the
importance of utilizing multiple ensembles, especially to mitigate the impact of internal cli-
mate variability. In addition, the uncertainty due to model errors also plays an important
role in representing complex small-scale atmospheric processes. However, nowadays GCMs
provide a finer horizontal resolution, which makes the use of high-resolution models on a
km-scale, as described in section 1.5, an insightful tool for detecting projected changes
in atmospheric circulation patterns in order to better understand possible changes in
heatwave properties beside mean global warming. Nevertheless, existing model errors
still contribute to difficulties in accurately predicting heatwaves, highlighting the need for
ongoing improvements in model development and validation to better understand and
mitigate the impacts of heatwaves.

Based on the existence of model uncertainty, the results of selected CMIP6 models should
be in any case evaluated against reanalysis or observational data over the historical period.
This comparison allows for an assessment of the model’s ability to accurately simulate
heatwave characteristics in the historical period. Only when the statistics of the historical
period to some extent match the reference dataset, one can make a statement about
whether the model is even capable of simulating meaningful future heatwave projections.
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Figure 26.: Daily threshold exceedances and monthly averaged frequencies at a selected grid cell
(lat = −1.25◦, lon = 358.75◦) from MPI-ESM-HR (top), MPI-ESM-LR (middle), BCC-CSM2-MR
(bottom) for the biased case.
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A.2. 4.1.2
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Figure 27.: Daily threshold exceedances and monthly averaged frequencies at a selected grid cell
(lat = −1.25◦, lon = 358.75◦) from MPI-ESM-HR (top), MPI-ESM-LR (middle), BCC-CSM2-MR
(bottom) for corrected case.
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Figure 28.: Biases in the frequency of temperature extremes in BCC-CSM2-MR (a, b) and MPI-
ESM-LR (c, d). Spatial distribution of biases in the frequency of daily maximum temperatures
based on exceedances of the 99th percentile using a moving threshold.
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Figure 29.: Area of the 100 biggest heatwaves for MPI-ESM-HR (top), MPI-ESM-LR (middle)
and BCC-CSM2-MR (bottom).
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Figure 30.: Duration of the 100 biggest heatwaves for MPI-ESM-HR (top), MPI-ESM-LR
(middle) and BCC-CSM2-MR (bottom).
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Figure 31.: Magnitude of the 100 biggest heatwaves for MPI-ESM-HR (top), MPI-ESM-LR
(middle) and BCC-CSM2-MR (bottom).
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