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S1 Detailed methods: sub-grid anomaly

In the calculation of the sub-grid anomaly of extreme indices two orders of calculation

can be distinguished, that we refer to as “regrid-index” and “index-regrid”.

regrid-index

This approach is taken in the main manuscript as it best highlights the effect of output

resolution. It first regrids the base-variables (daily maximum temperature or daily pre-
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Figure S1: Direct comparison of regridding methods: (left) regrid-index (same as in the

main manuscript) and (right) index-regrid for the case of the annual maximum of daily

maximum temperature.

cipitation) from zoom level 9 to zoom level 6. A given extreme index is then calculated

on both zoom level 9 and 6. Finally, the resolutions are compared.

index-regrid

In the alternative approach a given extreme indices is calculated only once on zoom level

9. The index is then regridded to zoom level 6 and resolutions are compared (figure S1).

For this approach, the mean of all anomalies within one coarse grid cell is zero by

definition (which is not the case for the “regrid-index” approach). For the example of the

annual maximum of daily maximum temperatures, the differences between resolutions

(sub-grid anomalies) are lower for “index-regrid” because the coarse mean is higher: cal-

culating the maximum from a single mean value on zoom level 6 (“regrid-index”) yields

a smaller values than calculating the maxima from 64 values on zoom level 9 and then

averaging them (“index-regrid”).

S2 Sub-grid anomalies for precipitation

In the main manuscript we describe the sub-grid anomaly for the hottest day in the year

(figure 5) with a focus on the Indian sub-continent. Here, we also discuss the correspond-

ing precipitation-based extreme index: the annual maximum of daily precipitation (fig-

ures S10 (top row) and S2). Compared to the temperature case, where clear geographical

features emerge, precipitation is dominated by the effect of coarsening relatively indepen-

dent of location. As we use the “regrid-index” approach (see section S1) for all sub-grid

2



8
0
8
16
24
32
40
48
56
64
72
80

8
0
8
16
24
32
40
48
56
64
72
80

Annual maximum of daily precipitation sub-grid anomaly (mm/day)
ICON                                                                 IFS               

Figure S2: Same as figure 5b in the main manuscript but for the annual maximum of

daily precipitation. The red contour-lines indicate 500m elevation.

anomaly calculations, maximum precipitation is higher everywhere in the zoom level 9

resolution compared to the coarser zoom level 6 resolution. For zoom level 9 the annual

maximum is calculated at high resolution capturing small-scale – high-intensity precipi-

tation events. For zoom level 6, in contrast, the daily data are first coarsened averaging

out these small-scale events and only then is the annual maximum calculated.

However, topographical features still do play a role, in particular orography as shown

in figure S2. For both ICON and IFS the Western Ghats, a mountain range close to the

west coast of India, leads to a clearly increased precipitation at zoom level 9. A similar

effect can be observed in the north of the Indian sub-continent at the Himalayan mountain

range.

S3 City coordinates

The coordinates of the four cities used in the paper are taken from Wikipedia: Karachi

(https://en.wikipedia.org/wiki/Karachi), Mumbai (https://en.wikipedia.org/

wiki/Mumbai), Chennai (https://en.wikipedia.org/wiki/Chennai), and Kathmandu

(https://en.wikipedia.org/wiki/Kathmandu). For both the zoom level 9 and zoom

level 6 girds the cell with center closest to the city coordinates are taken. The resulting

values are summarized in table S1
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Table S1: City coordinates (reference) and their interpolated coordinates for the zoom

level 9 and zoom level 6 grids.

City Reference (lat/lon) Zoom 9 (lat/lon) Zoom 6 (lat/lon)

Mumbai 19.08°N/72.88°E 19.08°N/72.95°E 18.84°N/73.12°E
Chennai 13.08°N/80.28°E 13.09°N/80.24°E 12.64°N/80.16°E
Karachi 24.86°N/67.01°E 24.87°N/66.97°E 24.62°N/66.80°E
Kathmandu 27.71°N/85.32°E 27.70°N/85.25°E 27.28°N/85.08°E
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Figure S3: (left) Same as figure 4a in the main manuscript but zoomed into a region with

strong Moiré effect in ICON (100 °W to 30 °W and 20 °N to 50 °N). (right) The effect is

not visible for IFS as it is regridded from a different grid.

S4 Moiré effect in ICON output

We briefly discuss the wave-like patterns visible in the return levels of the ICON model in

figure 1 in the main manuscript (e.g., along most of the western edge of the Atlantic and

in most Equatorial regions (see figure 4 in the main manuscript and figure S4 for a zoom

in). The patterns have so far only emerged for the climatology of hourly return levels and

are not visible in more moderate precipitation extremes (figure S6). Additional analysis

revealed that these patterns are introduced by interference due to the Moiré effect in the

nearest neighbour remapping from the native icosahedral ICON grid to the HEALPix

output grid. Since this remapping is done by the ICON model itself the original data is

not stored and no re-processing of the data is possible. Overall, the effect is small and

does not affect any of our conclusions.
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S5 Comparison of absolute and relative indices

The ETCCDI indices features 2 types of extreme thresholds: absolute and relative thresh-

olds. Since they typically capture fundamentally different aspects of extremes, their

properties can often not directly be compared. For the example of precipitation, two

absolute threshold metrics exist: the number of days exceeding 10mm precipitation per

day (r10mm) and the number of days exceeding 20mm (r20mm). In addition, two relative

thresholds exist: the sum of precipitation from days where precipitation exceeds the local

95th (r95p) and 99th percentile (r99p). As these two index categories capture conceptu-

ally different properties (number of days versus precipitation sums) a direct comparison

is not meaningful. A similar consideration holds for temperature extreme indices with

the warm and cold spell duration indices capturing a duration (relative threshold), while

absolute indices, such as summer or frost days capture a sum of days (absolute threshold).

Yet a comparison of sub-grid properties of absolute and relative threshold-based in-

dices is interesting to isolate differences in their behavior. Here, we use the example of

summer days (annual count of days where maximum temperature exceeds 25◦) and hot

days (annual frequency of days where maximum temperature exceeds its local and season-

ally varying 90th percentile). As such they are closely related as, e.g., a hot day frequency

of 10% is equivalent to approximately 36 hot days per year. While we limit our discussion

to these two examples here, the conclusions can be generalized also to other indices.

Figure S5 shows different metrics for both indices based on the IFS model. The 29-year

mean climatology of summer days reveals a strong latitude dependence, with no summer

days occurring at high latitude, a transition region at mid-latitudes, and summer days

occurring around the year at low latitudes. Is stark contrast, hot days occur exactly 10%

of the time in the 29-year mean by definition, as the same 29 years where used to calculate

the 90th percentile (figure S5 top tow).

The sub-grid variability of summer days is discussed in section 3.2 the main manuscript.

Here, we show the coefficient of variation in addition. This view is clearly dominated by

transition regions (both due to latitude and elevation) where summer days can occur

by they are not frequent. The hot day frequency behaves very differently compared to

summer days: the amplitude of the sub-grid anomaly is more homogeneous with a maxi-

mum at about 5% (or about 18 days compared to 150 days for summer days). Since the

climatology is also very homogeneous, the pattern hardly changes between the standard

deviation and the coefficient of variation in contrast to the summer days. The effect of

coastlines and topography is also greatly reduced. Yet, some imprint of topography and

land-sea contrasts remains even for hot days as also discussed in the main manuscript.
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Figure S4: Comparison of an absolute (summer days) and relative (hot days) threshold-

based extreme index. (top) 29-year mean climatology, (2nd row) sub-grid anomaly, and

(bottom rows) coefficient of variation (standard deviation divided by mean). Note that

for hot days the 29-year mean value is 10% everywhere by definition, corresponding to

about 36 hot days per year. The range of the coefficient of variation is fixed to the same

range to ease comparability.
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S6 Additional figures
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Figure S5: 2021-2049 mean for (top) daily maximum temperature and (bottom) daily

precipitation from (left) ICON and (right) IFS.
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Figure S6: Frequency of daily precipitation exceeding 400mm for (left) ICON and (right)

IFS.
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Figure S7: 2021-2049 mean for the three heat metrics used in figure 2 in the main

manuscript: (top) annual maximum of daily maximum temperature, (middle) summer

days (maximum temperature > 25◦C), and (bottom) warm spell duration index (sum of

days where maximum temperature is above the 90th percentile for at least six consecutive

days) for (left) ICON and (right) IFS.
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Figure S8: Sub-grid anomaly for the three heat metrics shown in figure 2 in the main

manuscript: (top) annual maximum of daily maximum temperature, (middle) summer

days (maximum temperature > 25◦C), and (bottom) warm spell duration index (sum of

days where maximum temperature is above the 90th percentile for at least six consecutive

days) for (left) ICON and (right) IFS.
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Figure S9: 2021-2049 mean for the three precipitation metrics shown in figure 3 in the main

manuscript: (top) annual maximum of daily precipitation, (middle) number of heavy rain

days (daily precipitation > 10mm), and (bottom) maximum annual length of consecutive

wet days (daily precipitation > 1mm) for (left) ICON and (right) IFS.
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Figure S10: Sub-grid anomaly mean for the three precipitation metrics shown in figure 3

in the main manuscript: (top) annual maximum of daily precipitation, (middle) number

of heavy rain days (daily precipitation > 10mm), and (bottom) maximum annual length

of consecutive wet days (daily precipitation > 1mm) for (left) ICON and (right) IFS.
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Figure S11: Daily precipitation lag 1 auto-correlation in the period 2021-2049 for (top)

ICON, (middle) IFS, and (bottom) their difference. The left column shows zoom level 9,

the right one zoom level 6.
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Figure S12: Sub-grid coefficient of variation for maximum annual length of consecutive

wet days (daily precipitation > 1 mm) for (left) ICON and (right) IFS.
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Figure S13: ICON ocean fraction sub-grid variability (left) and zoom-in on the Indian

sub-continent (right).

14



Zoom 9: topography (m) Zoom 6: topography (m)

Zoom 9: topography (m) Zoom 6: topography (m)

Zoom 9 -> 6: topography StdDev (m) Zoom 9 -> 6: topography StdDev (m)

0
750
1500
2250
3000
3750
4500
5250
6000

0
750
1500
2250
3000
3750
4500
5250
6000

0
750
1500
2250
3000
3750
4500
5250
6000

0
750
1500
2250
3000
3750
4500
5250
6000

0
100
200
300
400
500
600
700
800
900
1000

ICON

Figure S14: (top) ICON land topography at (left) zoom level 9 and (right) zoom level 6.

(bottom left) Sub-grid variability of the topography and (bottom right) sub-grid anomaly

of topography in the Indian region. Cells with more than 50% ocean fraction at a given

resolution are shown in blue in the upper panels.
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