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Abstract. Multi-model ensembles can be used to estimate uncertainty in projections of regional climate, but this uncertainty

often depends on the constituents of the ensemble. The dependence of uncertainty on ensemble composition is clear when

single model initial condition large ensembles (SMILEs) are included within a multi-model ensemble. SMILEs introduce

"new" information into a multi-model ensemble by representing region-scale internal variability, but also introduce redundant

information, by virtue of a single model being represented by 50-100 outcomes. To preserve the contribution of internal5

variability and ensure redundancy does not overwhelm uncertainty estimates, a weighting approach is used to incorporate 50-

members of the Community Earth System Model (CESM1.2.2), 50-members of the Canadian Earth System Model (CanESM2),

and 100-members of the MPI Grand Ensemble (MPI-GE) into an 88-member Coupled Model Intercomparison Project Phase 5

(CMIP5) multi-model ensemble. The weight assigned to each multi-model ensemble member is based on the member’s ability

to reproduce observed climate (performance) and scaled by a measure of redundancy (dependence). Surface air temperature10

(SAT) and sea level pressure (SLP) diagnostics are used to determine the weights, and relationships between present and future

diagnostic behavior are discussed. A new diagnostic, estimated forced trend, is proposed to replace a diagnostic with no clear

emergent relationship, 50-year regional SAT trend.

The influence of the weighting is assessed in estimates of Northern European winter and Mediterranean summer end-of-

century warming in the CMIP5 and combined SMILE-CMIP5 multi-model ensembles. The weighting is shown to recover15

uncertainty obscured by SMILE redundancy, notably in Mediterranean summer. For each SMILE, the independence weight

of each ensemble member as a function of the number of SMILE members included in the CMIP5 ensemble is assessed. The

independence weight increases linearly with added members with a slope that depends on SMILE, region, and season. Finally,

it is shown that the weighting method can be used to guide SMILE member selection if a subsetted ensemble with one member

per model is sought. The weight a SMILE receives within a subsetted ensemble depends on which member is used to represent20

it, reinforcing the advantage of weighting and incorporating all initial condition ensemble members in multi-model ensembles.
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1 Introduction

Projections of regional climate change are both key to climate adaptation policy and fundamentally uncertain due to the nature

of the climate system (Deser et al., 2012; Kunreuther et al., 2013). In order to represent regional climate uncertainty to policy-25

makers, scientists often turn to multi-model ensembles to provide a range of plausible outcomes a region may experience

(Tebaldi and Knutti, 2007). Uncertainty in a multi-model ensemble is commonly estimated from the ensemble spread, which

can be represented e.g., as the 5-95% likely range of the distribution and is usually presented with respect to the arithmetic

ensemble mean (e.g. Collins et al., 2013). This representation of uncertainty appears unambiguous, but is perhaps deceptively

so. It is influenced by choices made in multi-model ensemble construction, choices that are often overlooked (Knutti et al.,30

2010a, b).

Multi-model ensembles, such as those constructed from Coupled Model Intercomparison Projects or CMIPs (Meehl et al.,

2000), tend to be comprised of both different models and multiple members of the same model, subject to the same radiative

forcing pathway intended to reflect plausible future emissions scenario (van Vuuren et al., 2011; O’Neill et al., 2014). This

choice allows the multi-model ensemble to represent two types of regional-scale uncertainty: model uncertainty and internal35

variability (e.g. Hawkins and Sutton, 2009; Deser et al., 2012).

Model uncertainty accounts for differences in how models parameterize processes in the climate system that are not other-

wise captured on the spatial and temporal resolution of global climate models. Subgrid scale processes are often the product of

complex interactions and feedbacks between the land surface, ocean, cryosphere, and atmosphere, many of which can not be

directly measured (e.g. Seneviratne et al., 2010; Deser et al., 2007). How models estimate these interactions can result in vari-40

ous advantages and limitations in how climate in different regions is represented, and thus affect regional uncertainty estimates.

By considering differences in regional "performance", it becomes clear that uncertainty is affected by the assumption that each

member of a multi-model ensemble is an equally plausible representation of observed climate. Known biases associated with

cloud processes, land-atmosphere interactions, and sea surface temperature (e.g. Boberg and Christensen, 2012; Li and Xie,

2012; Pithan et al., 2014; Merrifield and Xie, 2016) may introduce more-than-representative uncertainty into projections of fu-45

ture climate. Using expert judgement to weight or select multi-model ensemble members based on process- or region-specific

metrics of performance has been shown to justifiably constrain uncertainty (e.g. Abramowitz et al., 2008; Knutti et al., 2017;

Lorenz et al., 2018).

The second type of uncertainty, internal variability, reflects the regional influence of the amalgamation of unpredictable

fluctuations in the climate system (Deser et al., 2012; Knutti and Sedláček, 2013). Internal variability is ostensibly a feature of50

the climate system and therefore is sometimes referred to as irreducible (Hawkins and Sutton, 2009). However, the influence of

internal variability on climate variables such as surface air temperature (SAT) can be quantified and accounted for in projections

of future climate using dynamical adjustment methods (e.g. Deser et al., 2016; Sippel et al., 2019). Additionally, internal

variability can be explicitly represented by sets of simulations from the same model, subject to identical forcing, in which

members differ only by initial conditions (e.g. Kay et al., 2015; Maher et al., 2019). These single member initial condition55
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large ensembles or SMILEs have become an indispensable tool to concisely represent uncertainty within a model, information

that should be considered in a multi-model ensemble context (Rondeau-Genesse and Braun, 2019).

The prospect of including SMILE members into a multi-model ensemble highlights another tacit assumption made during

multi-model ensemble construction: each member is an independent representation of climate. Though all members of a multi-

model ensemble describe the same climate system, differences in performance tend to create a distribution of regional climate60

change estimates. If projections are too similar, the redundant information narrows this distribution and reduces uncertainty

(Herger et al., 2018). There are several possible reasons for redundancy within a multi-model ensemble, first, different models

can have similar biases with respect to observations. Models have historically shared code, from parametrization schemes to

full components, and tend to have the same limitations associated with resolution (i.e., simplified topography) (Masson and

Knutti, 2011; Knutti et al., 2013; Boé, 2018). Another contributor to redundancy is multiple initial condition ensemble members65

that project the same outcome, a situation made more likely with the 50 to 100 members of a SMILE. It therefore becomes

important when incorporating SMILEs into a multi-model ensemble that uncertainty estimates reflect effective degrees of

freedom in the ensemble (Pennell and Reichler, 2011). This can be achieved by down-weighting redundant information by a

measure of independence (Abramowitz et al., 2019).

In this study, we evaluate if a performance and independence weighting scheme (Knutti et al., 2017; Lorenz et al., 2018;70

Brunner et al., 2019) can be used to include three SMILEs into a CMIP5 multi-model ensemble and provide a justifiably

constrained estimate of European regional end-of-century warming uncertainty. Northern European winter and Mediterranean

summer SAT changes between the 1990-2009 and 2080-2099 mean state are considered. We discuss details of the weighting

method including emergent predictor relationships and optimal parameter choices for including "new" information associated

with internal variability and mitigating the distributional constraint associated with redundancy. We highlight a new metric,75

estimated forced trend, which can be used as an alternative to trend-based metrics that are shown to not optimally reflect

a model’s performance on regional scales. We compare how the weighting shifts the CMIP5 distribution with and without

the SMILEs included and explicitly compute independence weight as a function of the number of members for each SMILE.

Finally, we use the weighting to demonstrate how subsetting, the practice of selecting one member from each model as a means

of ensuring independence, affects a SMILE’s representation within an ensemble. The SMILEs, CMIP5, and observational80

datasets used in the weighting are described in Section 2, while the weighting is detailed in Section 3. The influence of the

weighting, the SMILE-specific independence weight evolution, and the drawbacks of representing a SMILE with a single

member are discussed in Section 4. To close, conclusions and discussion is presented in Section 5.

2 Data

The multi-model ensemble used in this study is comprised of members from the CMIP5 ensemble and three SMILEs; each85

ensemble is shown in terms of their ensemble mean and spread (±1 standard deviation) for Northern European (NEU) win-

ter (December-January-February; DJF) SAT (Figure 1a) and Mediterranean (MED) summer (June-July-August; JJA) SAT

(Fig.1b). The NEU and MED regions used are the SREX regions defined in Seneviratne (2012). All models are forced with
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a) Northern European Winter SAT b) Mediterranean Summer SAT

Figure 1. Observational estimate or OBS (ERA-20C; black) and the ensemble mean and spread (±1σ) of a) DJF NEU and b) JJA MED SAT

(◦C) for the CMIP5 ensemble (blue), the CESM1.2.2 large ensemble (red), CanESM2 large ensemble (yellow), and the MPI grand ensemble

(green). The ensemble mean of each ensemble is shown by a solid line and the ensemble spread is shown by the shading. The number of

members, N, in each ensemble is indicated in the legend.

historical CMIP5 forcing from 1950-2005 followed by Representative Concentration Pathway 8.5 (RCP8.5) forcing from

2006–2099 (Meinshausen et al., 2011).90

A global atmospheric reanalysis product, ERA-20C, is used to represent observed climate (Fig.1 black). Created by European

Centre for Medium-Range Weather Forecasts (ECMWF), ERA-20C assimilates surface pressure and marine wind observations

over the 20th century (1900-2010) into the IFS version Cy38r1 model (Poli et al., 2016). While the weighting can be based

on several observational estimates to account for observational uncertainty, we chose to use a single observational estimate in

order to have a simple and straight-forward definition of climate within which the sensitivity of the weighting scheme can be95

interrogated. ERA-20C reanalysis was chosen because it provides temporally and spatially complete SAT and SLP fields that

extend back to 1950. Additionally, as reanalysis products are, after all, model-based, we selected a reanalysis product with

both SLP and SAT available to ensure consistency in the relationship between the two fields. This was necessary because the

SLP-SAT relationship is used to obtain the circulation-induced component of SAT, which is removed to obtain the estimated

forced SAT trends (see Appendix A). Though ERA-20C is a reanalysis product, we henceforth refer to it as "observations" or100

"OBS" to distinguish it from members of the multi-model ensemble.

The basis multi-model ensemble to which SMILE members are added comes from the CMIP5 archive (Fig.1 blue). Members

used are listed in Table 1. In total, 88 members from 40 model setups are used, including 13 initial condition ensembles ranging

from 3 to 10 members. A similar CMIP5 multi-model ensemble has been used in Lorenz et al. (2018) and Brunner et al. (2019).
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Table 1. Summary of the CMIP5 Multi-Model Ensemble used in this study.

Model Members Used Model Members Used

ACCESS1-0 r1i1p1 GISS-E2-H-CC r1i1p1

ACCESS1-3 r1i1p1 GISS-E2-H r(1-2)i1p1,r1i1p2,r(1-2)i1p3

bcc-csm1-1-m r1i1p1 GISS-E2-R-CC r1i1p1

bcc-csm1-1 r1i1p1 GISS-E2-R r(1-2)i1p1,r1i1p2,r(1-2)i1p3

BNU-ESM r1i1p1 HadGEM2-AO r1i1p1

CCSM4 r(1-6)i1p1 HadGEM2-CC r1i1p1

CESM1-BGC r1i1p1 HadGEM2-ES r(1-4)i1p1

CESM1-CAM5 r(1-3)i1p1 inmcm4 r1i1p1

CMCC-CESM r1i1p1 IPSL-CM5A-LR r(1-3)i1p1

CMCC-CMS r1i1p1 IPSL-CM5A-MR r1i1p1

CMCC-CM r1i1p1 IPSL-CM5B-LR r1i1p1

CNRM-CM5 r(1,2,4,6,10)i1p1 MIROC-ESM r1i1p1

CSIRO-Mk3-6-0 r(1-10)i1p1 MIROC-ESM-CHEM r1i1p1

CanESM2 r(1-5)i1p1 MIROC5 r(1-3)i1p1

EC-EARTH r(1,2,8,9,12)i1p1 MPI-ESM-LR r(1-3)i1p1

FGOALS-g2 r1i1p1 MPI-ESM-MR r(1-3)i1p1

FIO-ESM r(1-3)i1p1 MRI-CGCM3 r1i1p1

GFDL-CM3 r1i1p1 MRI-ESM1 r1i1p1

GFDL-ESM2G r1i1p1 NorESM1-M r1i1p1

GFDL-ESM2M r1i1p1 NorESM1-ME r1i1p1

Total 88 members

Three SMILEs are incorperated into the CMIP5-based multi-model ensemble: a 50-member ensemble generated using the105

Community Earth System Model version 1.2.2 (CESM1.2.2; Fig.1 red), the 50-member Canadian Earth System Model version

2 (CanESM2) large ensemble (Fig.1 yellow), and the 100-member Max Planck Institute for Meteorology Grand Ensemble

(MPI-GE; Fig.1 green). Summarized in Table 2 and described in further detail below, the three SMILEs present a representative

distribution of internal variability for each model in the two European regions and seasons considered.

The CESM1.2.2 large ensemble used in this study was derived from a 4700-yr CESM control simulation with constant prein-110

dustrial forcing generated at ETH Zürich (Sippel et al., 2019). CESM1.2.2 uses the Community Atmosphere Model, version

5.3 (CAM5.3) and has a horizontal atmospheric resolution of 1.9◦ × 2.5◦ with 30 vertical levels (Hurrell et al., 2013). The

preindustrial control run was branched at 20-year intervals, starting from the year 580, to create an ensemble with macro initial

conditions, i.e., different coupled initial conditions picked from well separated start dates (Stainforth et al., 2007; Hawkins
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Table 2. Summary of the SMILEs used in this study.

Model Members Used

CESM1.2.2 r(0-49)i1p1

MPI-GE r(1-100)i1p3

CanESM2 historical-r(1-5) r(1-10)i1p1

Total 200 members

et al., 2016). Members of the macro initial condition ensemble were run from 1850-1940 driven by historical CMIP5 forcing115

(Meinshausen et al., 2011). At year 1940, each macro initial condition member was branched into four different realizations,

each subject to an atmospheric temperature perturbation of 10−13 to create "micro" initial condition ensembles (Hawkins et al.,

2016). From these micro initial condition ensembles, 50 members were selected for the CESM1.2.2 large ensemble (specifi-

cally, 4 micro ensemble members from macro ensemble members 1 through 12 and 2 micro ensemble members from macro

ensemble member 13).120

The MPI Grand Ensemble was generated using the low resolution set up of the MPI Earth System Model (MPI-ESM1.1)

(Giorgetta et al., 2013). The 100 member ensemble has macro initial conditions, a preindustiral control simulation was branched

on the first of January for selected years between 1874 and 3524 to sample different states of a stationary and volcano-free

1850 climate (Maher et al., 2019). The MPI-GE uses ECHAM6.3 run in a T63L47 configuration (Stevens et al., 2013) as its

atmospheric component model for a horizontal resolution of approximately 1.8◦.125

The CanESM2 (Arora et al., 2011) large ensemble was initiated from the 5 CanESM2 members contributed to CMIP5

(which are thus included in our CMIP5 basis multi-model ensemble). As with CESM1.2.2, the CanESM2 large ensemble has

a combination of macro and micro initial conditions. Macro initial conditions were taken from year 1950 of the 5 original

CanESM2 members. Each were then branched 10 times with micro initial conditions (a random permutation to the seed used

in the random number generator for cloud physics) to give a total of 50 members (Swart et al., 2018). The CanESM2 large130

ensemble uses the CanAM4 atmosphere model run at a T63 spectral resolution.

3 Weighting Scheme

To constrain the multi-model ensemble uncertainty, multi-model ensemble members are weighted by a combination perfor-

mance and independence weighting metric developed by Knutti et al. (2017), following on the work of Sanderson et al. (2015a,

b). The basic principle is that a multi-model ensemble member will receive a performance weight based on how closely it re-135

sembles observed climate (based on chosen predictors; detailed in the following section). That performance weight will then

be scaled by an independence weight which determines the degree to which a multi-model ensemble member is redundant, a

duplicate of another member in the ensemble. Here, both the performance and independence weights are based on root-mean-
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square-error (RMSE) distance metrics; Di represents the distance between a multi-model ensemble member and observations

and Sij represents the distance between multi-model ensemble member i and multi-model ensemble member j.140

It is particularly important to note the distinction between multi-model ensemble member and model, the language is inten-

tionally chosen to highlight that each SMILE member becomes a multi-model ensemble member receiving a weight, though

they come from a single model. The independence metric is based solely on Sij and not on any prior knowledge of the multi-

model ensemble member’s origin. This is done to preserve the contribution of any member that adds independent information

to the ensemble statistics, whether that information comes from internal variability within a SMILE or from inter-model dif-145

ferences.

The distance metrics are used in a weighting function wi to determine the weight of each multi-model ensemble member

(M):

wi =
e
−D

2
i

σ2
D

1 + ΣM
j 6=ie

−
S2
ij

σ2
S

(1)

Upon computation of all the weights, each weight is then normalized by Σiwi such that they sum to 1.150

The numerator of wi serves as the performance weight, which decreases exponentially as members get further from obser-

vations (Di >> 0). A shape parameter σD dictates the width of the performance weight Gaussian, determining how far apart

a member and observations must be to be down-weighted. A larger σD results in more ensemble members receiving small

performance weights and vice versa. Therefore, σD reflects how strongly one wishes to penalize a member for not resembling

observations. Here, we select σD to be 0.4 (further discussion in Appendix B).155

The denominator ofwi serves as the independence weight, which is based on how far a member is from all the other members

in the ensemble. As with the performance weight, a shape parameter σS dictates the width of the Gaussian which is applied to

each member pair. σS represents how close a member can be to another member before they are considered redundant. For a

member with no close neighbors (Sij >> σS), the independence weight tends to 1, preserving the member’s overall weight.

For a member with many close neighbors (Sij << σS), the independence weight is greater than 1 and reduces its overall160

weight. The inclusion of SMILEs in a multi-model ensemble emphasizes the need for an independence weight; if SMILE

members are simply redundant, they serve to bias ensemble statistics by virtue of being abundantly represented. It is therefore

important to select a σS that is large enough such that members of a SMILE that are similar to each other are considered

redundant members, but not so large that the majority of multi-model ensemble members are considered redundant. Here, we

select DJF NEU σS to be 0.23 and JJA MED σS to be 0.26. Sensitivity to the choice of σS and further details on selection165

strategies are discussed in Appendix B.

3.1 Defining "Climate": Predictor Selection

Both the performance and the independence weight are based on a chosen definition of climate, a member’s performance is

based on its ability to reproduce observed climate and a member’s independence is based on how much its climate differs from
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the climate in other members. When defining climate, the aim is to optimize the "fit for purpose". For example, in Knutti et al.170

(2017), aspects of climate relevant for September sea ice extent, such as the climatological mean and trend in hemispheric

mean September Arctic sea ice extent, gridded climatological mean and standard deviation in SAT for each month, were

chosen. Lorenz et al. (2018) further discusses strategy for choosing predictors for North American maximum temperature,

and ultimately selected from a set of 24 predictors deemed relevant based on known physical relationships, predictor-target

correlations, and variance inflation considerations.175

Here "fit for purpose" is a relatively simple and straight-forward definition of climate within which the sensitivity of the

weighting scheme can be interrogated. We base the weighting on 9 predictors: the climatology and interannual variability

(represented by standard deviation) of SAT and SLP during the periods of 1950-1969 and 1990-2009 and a 50-year SAT trend

for the period of 1960-2009. SAT and SLP are chosen as predictors because (i) they have been found to be highly relevant

predictors by earlier studies (Brunner et al., 2019) and (ii) they are among the most comprehensively measured atmospheric180

fields prior to the satellite era (Trenberth and Paolino, 1980). In terms of spatial domain, SAT predictors are computed over

their corresponding ocean-masked SREX regions (i.e. NEU for DJF and MED for JJA) and SLP predictors are computed over

a larger domain which includes the North Atlantic (25− 90◦N and 60◦W−100◦E).

To compute the aggregate distance metrics from 9 predictors, all predictor and observational fields are bilinearly interpolated

to a shared 2.5◦ × 2.5◦ latitude-longitude grid. For each predictor, RMSE distances are computed at each grid point within the185

predictor domain and then area-averaged to obtain predictor distance metric values for each member. The resulting distributions

of predictor distance metrics are then normalized by their mid-range value ((maximum + minimum)/2). The normalization

allows each member to have a Di and Sij that is equal part each of the 9 predictor distance metrics.

A final consideration in predictor selection is one of relationship between past and future predictor behavior. A member’s

performance weight is based on its ability to reproduce observed climate and this methodological choice follows from the190

concept of emergent constraints (e.g. Hall and Manabe, 1999; Allen and Ingram, 2002; Borodina and Knutti, 2017). The idea

is that if a model accurately represents an aspect of historical climate, it is likely to realistically represent relevant physical

processes and therefore is likely to provide a reliable future projection. For this to hold, a statistical relationship between the

historical and future climate feature of interest must exist.

Statistical relationships between historical and future climate can be obscured by internal variability, and the inclusion of195

SMILEs in a multi-model ensemble highlights the need to understand the role of internal variability on the chosen predictors.

In particular, internal variability has been shown to influence trends in regional SAT even on the 50-year predictor timescales

we have selected (Deser et al., 2016). Because of this, a member may have a similar-to-observed SAT trend (and thus a higher

performance weight) by chance, simply because it has similar-to-observed climate variability over the trend period (i.e. a

similar set of El Niño and La Niña events or similar phasing of the Atlantic Multi-Decadal Oscillation). Because internal200

variability is inherently random in temporal phase (Deser et al., 2012), a member’s match to observations over one trend period

does not guarantee a match in the future. This issue is demonstrated in Figure 2ai, which shows that there is little discernible

relationship (R2 = 0.01) between the DJF NEU SAT trend from 1960-2009 and from 2050-2099 in CMIP5 with (black line) or

without (blue line) the SMILEs. Few members have a similar-to-observed 1960-2009 DJF NEU SAT trend of 3.7 ◦C/50 years.
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a) Northern European Winter SAT
Trend

i.

Estimated Forced Trend

ii.

b) Mediterranean Summer SAT

Trend

i.

Estimated Forced Trend

ii.

Figure 2. Predictor relationships of the domain-averaged 50-year trends of a) DJF NEU SAT and b) JJA MED SAT. 50-year raw trends are

shown in panel i and 50-year estimated forced trends are shown in panel ii. In each panel, 1960-2009 is shown on the abscissa and 2050-2099

is shown on the ordinate. Observational estimates of the 1960-2009 trends are indicated with the dashed black line. Least-squares regression

fits (solid lines) and R2 values computed for solely the CMIP5 output are shown in blue and computed for all output (CMIP5 and the three

SMILEs) are shown in black.

In contrast, a relationship emerges in summer between 1960-2009 and 2050-2099 Mediterranean SAT trends that is reinforced205

by the addition of the SMILEs (Fig.2bi).
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The removal of the influence of internal variability from regional SAT, however, provides an alternative performance metric

on which observations and models can be compared. Using a method of dynamical adjustment (described in Appendix A and

in further detail in Deser et al. (2016)), we obtain the estimated forced trend for 1960-2009 and 2050-2099. It is important to

distinguish the estimated forced trend from the forced trend, which is defined as the average across ensemble members. With210

only one observed realization of climate, there is no observational equivalent to the ensemble mean. In contrast, the estimated

forced trend can be computed in the same manner through dynamical adjustment in both observations and each multi-model

ensemble member.

Internal variability serves to amplify the observed SAT trend in both seasons, by 1.5◦C in Northern European winter (Fig.2a)

and by 0.4◦C in Mediterranean summer (Fig.2b). By removing the influence of internal variability, the resulting observed215

estimated forced SAT trends fall more centrally within the CMIP5 and SMILE distributions, as opposed to in the high side tail.

In terms of weighting, this means more members will receive a non-zero performance weight and will ultimately contribute to

the uncertainty estimate.

The estimated forced trend can also be thought of as a property of each model, a measure of response to the shared forcing

analogous to climate sensitivity (Knutti et al., 2017). We find that SMILE members, which share both model setup and forcing220

with each other, also tend to have similar estimated forced trends (Fig.2a,bii). In winter, the clustering of SMILE estimated

forced trends is striking in comparison with SMILE trends, CESM1.2.2 (CanESM2) members tend to have the least (most)

NEU warming in both periods, with MPI-GE members in between. The addition of the SMILEs then introduces a positive

relationship between past and future responses (Fig. 2aii, black line), while the relationship in CMIP5 is shown to be slightly

negative (Fig. 2aii, blue line). In summer, the positive relationship seen even between past and future Mediterranean SAT trends225

(Fig.2bi) is bolstered further by the combination of removing internal variability and adding the SMILES (Fig.2bii). R2 values

increases from 0.28 to 0.41. CanESM2 has the most JJA MED warming in both the past and future periods, while MPI-GE has

the least. Because estimated forced SAT trends in the regions of interest serve as a "fair" metric on which to compare models

and observations, we use is as the ninth predictor in the definition of climate used in our weightings. Emergent relationships

within the other eight predictors are discussed in Appendix C.230

4 Results

To assess the influence of the weighting, we evaluate the magnitude of regional European end-of-century warming in terms of

the SAT change (∆) from 1990-2009 climatology to 2080-2099 climatology. Two ensembles are considered, one comprised

solely of CMIP5 members (CMIP5; 88 members) and one comprised of all available members from CMIP5 and the three

SMILE (ALL; 288 members). The SAT ∆ distributions in both ensembles are shown as box-and-whiskers elements in Figure235

3 a,bi, with the unweighted distributions shown in transparent colors in the background and the weighted distributions shown

in solid colors in the foreground. Unweighted and weighted ensemble mean values are shown by solid horizontal lines within

the box elements. Ensemble spread is illustrated by the box, which indicates the 25th and 75th percentile, and the whisker,

which indicates the 5th and 95th percentile.
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Three comparisons between the CMIP5 and ALL distributions help to elucidate (i) how the weighting constrains uncertainty240

in the magnitude of end-of-century regional European warming and (ii) why it is important to weight SMILE members within

a multi-model ensemble. First, comparing distributional shifts between the unweighted and weighted CMIP5 distribution an-

chors how the weighting constrains uncertainty. In the absence of the weighting, the CMIP5 ensemble projects an ensemble

mean end-of-century warming of 5.9◦C and an interquartile spread of 2.2◦C for Northern European winter (Fig.3ai). Applying

weights to the CMIP5 ensemble shifts the DJF NEU SAT ∆ ensemble mean downwards by 0.4◦C, the 75th percentile down-245

wards by 0.7◦C, and 25th percentile downwards by 0.2◦C. This distributional shift towards less end-of-century warming is a

due, in part, to members with SAT ∆ greater than 8◦C receiving low weights, which are two orders of magnitude smaller than

the average assigned weight. For Mediterranean summer, the CMIP5 ensemble projects an unweighted ensemble mean SAT

∆ of 5.5◦C and an interquartile spread of 1.5◦C (Fig.3bi, transparent blue). The application of the weights results in a slight

upward shift in the JJA MED SAT ∆ ensemble mean (by 2%) and more substantial upward shifts in the 25th (by 5%) and 5th250

percentiles (by 10%). The weighting does not affect the 75th or 95th percentile of the JJA MED SAT ∆ distribution; members

which fall within the unweighted interquartile spread receive both the lowest and the highest weights. The contraction of the

low end-of-century warming tail broadly consistent with the shift found for the same region and season in Brunner et al. (2019).

Secondly, a comparison of the unweighted CMIP5 (transparent blue) and ALL (transparent gray) distributions demonstrates

why the weighting is necessary when incorporating SMILE members into a multi-model ensemble. The addition of 200 SMILE255

members to the 88 member CMIP5 ensemble shift the end-of-century warming distributions in both mean and interquartile

spread. To help illustrate the mean shifts, maps of the difference between the unweighted ALL ensemble mean and the un-

weighted CMIP5 ensemble mean are shown for DJF NEU in Fig.3aii and for JJA MED in Fig.3abii. The added SMILE

members shift the ALL SAT ∆ distributions in the same direction as the weighting shifts the CMIP5 distributions, i.e. less

DJF NEU end-of-century warming and more JJA MED end-of-century warming, but this is largely by chance. A SMILE with260

a different end-of-century warming tendency (for example, the 10-member CSIRO-Mk3-6-0 ensemble within CMIP5 has an

average DJF NEU SAT ∆ of 7.6◦C) will shift the distribution accordingly. With the 200 new projections of end-of-the-century

warming all equally contributing to distribution, the ALL ensemble has 25% less interquartile spread in both the DJF NEU and

the JJA MED ensemble distributions; treating each SMILE member as an independent piece of information serves to artificially

constrain uncertainty.265

Thirdly, by comparing the weighted CMIP5 (solid blue) to the weighted ALL distribution (solid gray), we ascertain that the

weighting can account for redundant information in the SMILEs. The ensemble mean of the weighted ALL ensemble is within

0.3◦C of the weighted CMIP5 ensemble mean in DJF over the NEU domain (Fig.3aiii). The ALL weighting also recovers

additional uncertainty in the 95th percentile and shifts interquartile spread upwards slightly towards that of the weighted CMIP5

ensemble. However, even after weighting, the addition of the SMILEs increases the positive skewness of the DJF NEU SAT ∆270

distribution, because no SMILE member warms more than 7◦C between 1990-2009 and 2080-2099. As CMIP5 members that

warm more than 8◦C are down-weighted by the DJF NEU performance metric, the increased constraint on uncertainty brought

by the SMILEs is consistent with the expected end-of-century warming range in CMIP5.
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Strikingly, the weighted JJA MED ALL ensemble distribution is nearly identical to the JJA MED CMIP5 ensemble distribu-

tion (Fig.3bi,iii). This suggests that the SMILEs do not add much "new" information about JJA MED end-of-century warming275

to the CMIP5 ensemble, in part due to inter-member agreement within SMILEs and in part due to the SMILE projections

falling centrally within the CMIP5 ensemble. Standard deviation in end-of-century JJA MED warming in each of the SMILEs

is approximately 0.2◦C (not shown), compared to a CMIP5 standard deviation of 1.1◦C. The recovery of uncertainty in the 5th

and 95th percentiles achieved through weighting such that a 288-member ensemble has the same distribution as an 88-member

ensemble is also a strong indicator that the weighting properly handles redundancy in JJA MED SAT ∆ projections. Pro-280

vided care is taken to select appropriate shape parameters (further discussion in Appendix B), we find the weighting approach

introduced by Knutti et al. (2017) to be a suitable way to incorporate large initial condition ensembles into a multi-model

ensemble.

4.1 Independence as a function of SMILE size

In addition to investigating the aggregate effect of weighting on multi-model ensemble distributions, we also explore how285

each SMILE is affected by the weighting individually. It is specifically of interest to know how the independence weight

serves to scale a SMILE member’s performance weight in the presence of other SMILE members. In Figure 4, we explore

the independence weight as a function number of SMILE members included in the CMIP5 ensemble. This is done by adding

CESM1.2.2, CanESM2, or MPI-GE members to the CMIP5 ensemble one at a time and evaluating the how the independence

weight of the first member added evolves as a function of SMILE size. The add-a-member protocol is repeated such that every290

SMILE member is the first member added and subsequent members are added in numerical order, i.e., member 2 is added

followed by member 1, 3, 4 and so on. In this setup, the performance weight of the first added member (not shown) stays

approximately constant; small deviations only occur if a subsequently added member falls outside the distribution and shifts

the predictor normalization. But the independence weight increases linearly with the number of SMILE members included in

the CMIP5 ensemble, with slopes that depends on SMILE member, region, and season (Fig.4).295

A simplified way to understand the evolution of a SMILE member’s independence weight is in the case where every CMIP5

member and the first added SMILE member are all perfectly independent (from equation 1, Sij →∞,ΣM
j 6=ie

−
S2
ij

σ2
S → 0). In

this limit, all ensemble members have an independence weight of 1. If a second SMILE member that happens to be identical

to the first is then added to the ensemble (Sij = 0), both SMILE members will have half their original weight, receiving an

independence weight of 2. If N identical SMILE members are added, each would have a weight scaled by 1/N.300

In reality, CMIP5 and SMILE ensemble members are not perfectly independent nor are SMILE members identical to each

other. Because CMIP5 and SMILE ensemble members are not perfectly independent, the first SMILE member added to the

CMIP5 ensemble can receive an independence weight above 1, a threshold shown with a dotted black line in the panels of

Fig.4. Initial independence weights above 1 happen consistently in the CanESM2 large ensemble in both seasons (Fig.4a,bii)

and in the MPI-GE in winter (Fig.4aiii), indicating that the first SMILE member added is already redundant within the CMIP5305
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a) DJF NEU b) JJA MED
i. i.

Ensemble Mean Difference, SAT Δ (ºC) 

DJF NEU ALL - CMIP5; unweighted

JJA MED ALL - CMIP5; weighted

JJA MED ALL - CMIP5; unweighted

DJF NEU ALL - CMIP5; weighted

ii.

iii.

ii.

iii.

Figure 3. (i) Box-and-whiskers showing unweighted (transparent) and weighted (solid) distributions of (a) DJF NEU and (b) JJA MED

SAT change (∆, [2080-2099]-[1990-2009]) for the CMIP5 ensemble (blue) and ALL ensemble (CMIP5 with the 3 SMILEs; gray). The box

element spans the 25th to 75th percentile of the distribution; mean SAT change is indicated by the horizontal line within the box. The whisker

element spans the 5th to 95th percentile. (ii) Difference between the unweighted ALL ensemble mean and the unweighted CMIP5 ensemble

mean at each grid-point for the (a) DJF NEU and (b) JJA MED. (iii) Difference between the weighted ALL ensemble mean and the weighted

CMIP5 ensemble mean at each grid-point for the (a) DJF NEU and (b) JJA MED.

ensemble. Members of the CESM1.2.2 large ensemble tend to receive initial independence weights near 1 (Fig.4a,bi), as do

MPI-GE members in summer (Fig.4biii).

Because SMILE members are not identical to each other, the first added SMILE member has an independence scaling of

less than 1/N, (Fig. 4, solid black one-to-one line) in all cases. SMILE members with the maximum and minimum slopes of

independence weight as a function of members added are highlighted to demonstrate the range on independence scaling present310
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in each ensemble. The steeper the slope, the more similar a SMILE member is to other members of the SMILE. Overall, there

is a larger range of slopes in the DJF NEU weighting than in the JJA MED weighting, consistent with larger inter-member

spread in winter than in summer. The minimum slopes belong to the SMILE members that are relatively independent within

the CMIP5 ensemble; initial independence weights range from 1.0 for CESM1.2.2 member 41 in the DJF NEU weighting

(Fig.4ai) to 2.0 for CanESM2 member 20 in the JJA MED weighting (Fig.4ai). In winter, the independent CESM1.2.2 and315

CanESM2 members receive about a quarter of their performance weight when all 50 members are included in the CMIP5

ensemble. Over the 100 members of the MPI-GE, the independence weight of member 91 increases only from 1.4 to 7.5

(Fig.4aii). In Mediterranean summer, SMILE members are scaled by larger independence weights due to redundancy within

the SMILEs. A notable example is MPI-GE member 56, which is relatively independent on its own in the CMIP5 ensemble,

but ultimately has its performance weight scaled by an independence weight of 25.1 when included with its counterparts320

(Fig.4biii).

4.2 Should a SMILE be represented by a single member?

Another common practice used to address redundancy in a multi-model ensemble is to subset or select one ensemble member

from each model. This follows from a different independence assumption than the distance-based one used in the weighting:

models are independent from one another while initial condition ensemble members are not. Subsetting can also be thought325

of as a binary weighting scheme where a large portion of the multi-model ensemble information receives zero weight. For

example, in our CMIP5 ensemble, subsetting by model corresponds to eliminating more than 50% of ensemble information

(from 88 to 40 members). Subsetting by modelling center eliminates more than 75% of ensemble information (from 88 to 20

members).

It is, therefore, worthwhile to consider whether or not a SMILE can be effectively represented by a single member. We assess330

this by weighting a CMIP5 subset ensemble, which is comprised of the first member from each of the 40 models in our CMIP5

ensemble, with one SMILE member included for a total of 41 members. Each of the 200 SMILE members are added to the

CMIP5 subset ensemble individually to serve as the SMILE’s sole representative. In this configuration, the SMILE receives a

weight by which it can be "ranked" in terms of its contribution to the region and season-specific weighted ensemble statistics.

Weight of the SMILE, as represented by each SMILE member, is shown in Figure 5a,b; SMILE rank within the CMIP5 subset335

ensemble is shown in Figure 5c,d. As a guide, the weight and rank each SMILE receives when represented by member 1 are

indicated with dashed line in each panel. We highlight member 1 because, often, when multiple initial condition members are

available, the first member is selected (e.g. Liu et al., 2012; Karlsson and Svensson, 2013; Sillmann et al., 2013).

A SMILE’s weight within the CMIP5 subset ensemble depends on which member is chosen to represent it. This reflects

the dominant influence of internal variability on regional scales. In Northern European winter, the MPI-GE tends to receive340

the highest weight in the CMIP5 subset ensemble (wi = 0.3), but can receive a weight of less than half that depending on

which member is selected (Fig.5a, green). For the CanESM2 large ensemble, being represented by member 1 results in the

SMILE receiving a relatively low rank of 20th out of 41 models within the DJF NEU ensemble (Fig.5c, yellow). If member 10

were to be used, the CanESM2 large ensemble would receive the 3rd highest weight. In Mediterranean summer, the CanESM2
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Member 41 (1.0 to 3.53)

Member 21 (1.3 to 10.2) 

Member 22 (1.2 to 4.0)

Member 2 (3.0 to 15.8) 

Member 91 (1.4 to 7.5)

Member 54 (2.5 to 22.2) 

a) DJF NEU independence weight as a function of SMILE size  
i. CESM1.2.2 ii. CanESM2 iii. MPI-GE 

Member 33 (1.1 to 9.6)

Member 22 (1.2 to 15.2) 

i. CESM1.2.2

Member 20 (2.0 to 10.7)

Member 5 (2.7 to 18.7) 

ii. CanESM2 

Member 55 (1.1 to 11.9)

Mem
ber 5

6 (1
.3 to 25.1) 

iii. MPI-GE 
b) JJA MED independence weight as a function of SMILE size   

Figure 4. Evolution of the independence weight of a SMILE member as additional SMILE members are added one at a time to the CMIP5

ensemble. The CESM1.2.2 large ensemble (red; i), the CanESM2 large ensemble (yellow; ii), and the MPI-GE (green; iii) are added to the

CMIP5 ensemble individually with each member having the opportunity to be included first. The independence weight when the number of

SMILE members included is 1 indicates how redundant the SMILE member is within the CMIP5 ensemble. The slope of the independence

weight indicates how similar other SMILE members are to the initial SMILE member, the maximum and minimum slopes in the SMILE are

emphasized and labeled with the initial and final independence weight. DJF NEU evolution is shown in panel a and JJA MED evolution is

shown in panel b.

large ensemble consistently receives a relatively low weight, while the CESM1.2.2 large ensemble and the MPI-GE tend to345

receive an average weight within the CMIP5 subset ensemble (Fig.5b). MPI-GE member 17 achieves the rank of 4th out of 41

models in the JJA MED ensemble, while member 1 assigns a rank of 22nd out of 41 models (Fig.5d, green). Ultimately, Figure 5

illustrates that uncertainty on regional-scales is likely to be over-constrained when information is eliminated through subsetting

and that it is worthwhile to include the totality of information in SMILEs into uncertainty estimates through weighting.
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CESM1.2.2
Member 1 

CanESM2
Member 1

MPI-GE
Member 1

CanESM2
Member 1 CESM1.2.2

Member 1 

MPI-GE
Member 1

MPI-GE
Member 1 

(rank: 1/41) 

CanESM2
Member 1

(rank: 20/41) CESM1.2.2
Member 1 

(rank: 21/41) 

MPI-GE
Member 1 

(rank: 22/41) 

CESM1.2.2
Member 1 

(rank: 20/41) 
CanESM2
Member 1

(rank: 26/41)

a) Weight of the included SMILE member in the 
CMIP5 subset ensemble, DJF NEU

b) Weight of the included SMILE member in the 
CMIP5 subset ensemble, JJA MED

c) Rank of the included SMILE member in the 
CMIP5 subset ensemble, DJF NEU

d) Rank of the included SMILE member in the 
CMIP5 subset ensemble, JJA MED

Figure 5. a) The DJF NEU weight of CESM1.2.2 large ensemble (red), CanESM2 large ensemble (yellow), and MPI-GE (green) as rep-

resented by each SMILE member. The weight of member 1 of each SMILE is indicated with a dashed line. b) As in a), but for JJA MED

weights. c) The DJF NEU rank (i.e. position within the 41 member ensemble) of the included SMILE member. Rank 1/41 (41/41) is the

model with the highest (lowest) weight. The rank of member 1 of each SMILE is indicated with a dashed line. d) As in c), but for JJA MED

rank.

5 Conclusions350

We find the performance and independence weighting scheme pioneered by Knutti et al. (2017) can be used to incorporate

regional climate information from three single member initial condition large ensembles into a CMIP5 multi-model ensemble

and return a justifiably constrained estimate of European regional end-of-century warming uncertainty. The weighting, which

accounts for an ensemble member’s ability to reproduce selected aspects of observed climate, is based on regional surface

air temperature and sea level pressure climatology and interannual variability over two 20-year intervals during the historical355

period (1950-1969 and 1990-2009) and a 50-year estimated forced SAT trend computed using a method of dynamical adjust-
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ment (Deser et al., 2016). These predictors are shown to both differentiate ensemble members from one another and to bring

in emergent relationships between past and future climate to the definition of performance. The principle of emergent con-

straints underpins the choice to use estimated forced SAT trend over SAT trend, as the former is an estimate of a model-specific

property that can be compared with observations and the latter is influenced by internal variability even on 50-year timescales.360

Other specifics of the weighting scheme are also discussed. A new strategy to set the independence weight shape parameter

at two standard deviations below the mean inter-member spread within the SMILEs, a CESM1.2.2 50-member ensemble, the

CanESM2 large ensemble, and the MPI grand ensemble, is demonstrated to be effective in differentiating "new" information

from redundant information that spuriously constrains uncertainty.

Uncertainty in Northern European winter and Mediterranean summer end-of-century warming is compared across combina-365

tions of a weighted and unweighted CMIP5 ensemble and a weighted and unweighted CMIP5 ensemble that includes the three

SMILEs (ALL ensemble). "New" information associated with regional-scale internal variability within SMILEs contributes

to narrowing weighted estimates of Northern European end-of-century winter warming uncertainty with respect to weighted

CMIP5 estimates. With and without the SMILEs, the weighting of Northern European winter SAT change between 1990-2009

and 2080-2099 projects systematically less warming than the unweighted CMIP5 ensemble. The weighting is shown to recover370

Northern European end-of-century winter warming uncertainty in the ALL ensemble in comparison to the unweighted ALL

ensemble, indicating the the independence weight effectively down-weights redundancy. The down-weighting of redundancy

is even clearer in the case of Mediterranean summer end-of-century warming uncertainty, where the SMILE projections lack

inter-member spread and fall centrally within the unweighted CMIP5 ensemble. The near-identical weighted CMIP5 and ALL

distributions of Mediterranean summer SAT change suggest that the redundant SMILE information is properly handled by the375

independence weight.

To better understand the role of the independence weight in each SMILE, we computed independence weight as a function

of number of SMILE members included in the CMIP5 ensemble for each SMILE individually. Independence weight increases

linearly with the number of SMILE members included, with initial values indicating potential redundancy with respect to

CMIP5 members and the slope indicating potential redundancy within the SMILE. SMILE members are more redundant in380

the JJA MED weighting than in the DJF NEU weighting; the most and least independent SMILE members are identified for

the two cases. The maximum a SMILE member’s performance weight is scaled is by an independence weight of 25 after the

addition of 100 ensemble members. Finally, we show that it is worthwhile to include all SMILE members in multi-model

ensembles in order to properly represent uncertainty due to regional-scale internal variability. When ensembles are subset to

include one member of each model, uncertainty estimates are sensitive to which member is selected.385

It is important to note that while the weighting has a relatively straightforward functional form, it requires an application-

specific set of predictors and appropriate shape parameters. Strategies to select optimal shape parameters are discussed in

Appendix B of this study and we advise that emergent predictor relationships are explored, as in Appendix C, to provide

justification for the performance metric. We assess a relatively unconventional multi-model ensemble in this study, which is

comprised of 200 members from 3 models and only 88 members from the remaining 40 models. This is a deliberate choice390

made to test the independence weight’s ability to handle redundant information and to determine if internal variability is large
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enough such that members are considered independent even though they come from the same model, as posited by Lorenz et al.

(2018). We find both to be the case for regional European SAT change, but redundancy (internal variability) may contribute

more (less) for other climate fields and on other spatial scales (i.e., globally). Determining best practices for representing

uncertainty in a multi-model ensemble that includes initial condition ensemble members is necessary in advance of CMIP6, as395

modelling centers are slated to submit more ensemble members to the project than were submitted to CMIP5 (Eyring et al.,

2016; Stouffer et al., 2017). A weighting scheme, such as the one assessed here, is thus ideal as it incorporates both model

uncertainty and internal variability information into a justifiable estimate of CMIP6 uncertainty.

Appendix A: Dynamical Adjustment

To obtain estimated forced trends in SAT, a method of dynamical adjustment, based on constructed circulation analogues, is400

used (Deser et al., 2016; Lehner et al., 2017; Merrifield et al., 2017; Guo et al., 2019). Dynamical adjustment provides an

empirically-derived estimate of the SAT trends induced by atmospheric circulation variability; removal of this circulation-

driven component from a SAT record thus reveals an estimate of the radiatively-forced SAT trend. Dynamical adjustment relies

on the ability to reconstruct a monthly mean circulation field, which we represent with sea level pressure (SLP) as in Deser

et al. (2016), from a large set of analogues. SLP analogues are selected from 60 possible choices (from the period 1950-2010)405

in the observational record, excluding the target month, and the method is therefore referred to as the "leave-one-out" method

of dynamical adjustment.

It is important to acknowledge that because of the paucity of analogue choices in leave-one-out dynamical adjustment, the

term "analogue" is a bit of a misnomer. The term evokes the idea of a match, though in practice, analogues may not closely

resemble the target which is discussed in more detail in the following paragraph. For convenience, we will continue to refer410

to the months used in target SLP construction as "analogues", but we do so with the understanding that target and analogue

patterns may differ over the selection domain.

A month is determined to be an analogue of the target month if the Euclidean distance between target and analogue SLP is

small. Euclidean distance is computed at each grid point and averaged over the domain 25-90◦N, 60◦W-100◦E. This selection

metric, therefore, does not require an analogue to match the target month spatially over the whole domain. This is necessary415

because, with 60 possible options, it is statistically unlikely that a "perfect" analogue will exist for a particular target month.

van den Dool (1994) found that it would take on the order of 1030 years to find two Northern hemisphere circulation patterns

that match within observational uncertainty. With this in mind, a smaller than hemispheric domain and an iterative averaging

schemes are employed to make the most of "imperfect" analogues available (Wallace et al., 2012; Deser et al., 2014, 2016).

Once the Euclidean distances are determined, theNa closest SLP analogues are chosen, and the iterative process of selecting420

Ns of Na SLP analogues and optimally reconstructing target SLP commences. We use Na = 50 and Ns = 30. The optimal

reconstruction of target SLP is mathematically equivalent to multivariate linear regression; each analogue is assigned a weight

(βi) such that a weighted linear combination of analogues produces a least-squares estimate of the target SLP. The analogue
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weighting scheme ensures that analogues which are further from (closer to) the target, in a Euclidean distance sense, contribute

less (more) to the constructed SLP field.425

After SLP is constructed, the weights derived for each SLP analogue are applied to their corresponding monthly-averaged

SAT fields. Prior to the application of weights, a quadratic trend representing anthropogenic warming is removed from the SAT

record at each point in space. The purpose of this detrending is discussed in Deser et al. (2016). The weighted, detrended SAT

fields are then used to construct a dynamic SAT anomaly field for the target month. SLP, which is a representative of low-level

atmospheric circulation, and SAT are physically related; SLP-derived weights are applied to SAT to empirically construct that430

relationship. Conceptually, dynamic SAT anomalies are those that would occur given the attendant circulation pattern. The

second through fifth steps of dynamical adjustment (selection of Ns of Na SLP analogues, optimal reconstruction of target

SLP, and construction of dynamic SAT) are then repeated Nr times. In this study, Nr = 100, following Lehner et al. (2017).

The dynamic component of SAT in the target month is the average of the Nr constructions. It is then subtracted from SAT in

the target month to find the residual component of SAT, used as an estimate of the radiatively-forced SAT trend.435

Appendix B: Selecting σD and σS

Determining the shape parameters σD and σS is an important step in the weighting process. σD can be set using a perfect

model test, as described in Lorenz et al. (2018). Here, the perfect model test is performed on an 43 member ensemble, which

includes only the first initial condition member from the SMILEs and each of the 13 CMIP5 initial condition ensembles. This

is done because having very similar members in the ensemble could bias the perfect model test, which is based on predicting440

one member using a weighted distribution of the rest. During the perfect model test, each member is assumed to be "truth" once

and a weighting is performed using the remaining members to predict this "truth". A range of σD values are used for each truth

prediction and the optimal σD is chosen as the smallest value such that the "truth" falls between the 10th and 90th percentile

of the "truth" prediction in 80% of the cases. The 80% threshold is chosen so as to not be over-confident in the weighting.

The RMSE distances between multi-model ensemble members and observations (Di) are shown in Figure B1. Members of445

the ALL ensemble are plotted alphabetically around the azimuth (see Table 1). In winter (Fig.B1a), distances between members

and observations are distributed in a positively skewed fashion with the mode of the distribution atDi = 0.41 and a tail of larger

Di values. In contrast, distances in summer (Fig.B1b) are approximately normally distributed about a mean of Di = 0.66. The

addition of the SMILEs to the distribution contribute to both of these distributional tendencies. With σD set to 0.4 in both cases,

members are more strongly weighted by performance in winter than in summer.450

σS can be determined using initial condition ensembles present in the multi-model ensemble, including SMILEs. The in-

clusion of SMILE members in a multi-model ensemble emphasizes the need for σS to be carefully selected, as SMILEs add

redundant information and the purpose of σS is to reduce the influence of redundant information. However, not all information

added by a SMILE is redundant. SMILEs also add "new" information to multi-model ensembles; inter-member distances in an

initial condition ensemble could be as large as inter-model distances in the multi-model ensemble (Figure B2).455
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OBS

MPI-GE

CESM1.2.2CanESM2

a) DJF NEU Di

OBS

OBS

MPI-GE

CESM1.2.2
CanESM2

b) JJA MED Di

Figure B1. RMSE distance Di, derived from the 9 climate-defining predictors, between observations (origin) and the 288 members of the

ALL ensemble (CMIP5 (blue) + CESM1.2.2 (red) + CanESM2 (yellow) + MPI-GE (green)). Members are plotted in alphabetical order (see

Table 1) around the azimuth. DJF NEU distances are shown in panel a and JJA MED distances are shown in panel b.

If σS is too small or too large, there are implications for the weighted ensemble mean and spread. This sensitivity to σS is

shown in Figure B2. As in Figure 3, we compare the unweighted and weighted CMIP5 distributions to the unweighted and

weighted ALL distribution. σS is varied from 0.05 to 0.8.

For small σS , all members are considered independent and redundant information reduces the ensemble spread in the ALL

weighted distribution. The addition of the SMILE members shifts the unweighted mean of the CMIP5 distribution down460

by 11% in winter and up by 6% in summer. The subsequent application of what is largely the performance weight shifts

the distribution down further in winter. This suggests that without the independence weight, redundant information from the

SMILEs dominates the distribution and results in an underestimate of uncertainty in SAT change.

If σS is set on the order of the largest inter-member distances in a SMILE (σS ≥∼ 0.4), few members of the multi-model

ensemble will be considered independent from each other. The systematic reduction of weights in the ensemble at large can465

also lead to an underestimate of uncertainty. Only members that are very far from other members will not have a reduction in

weight, but these "independent" members tend to also be far from observations and therefore have little weight to begin with.

The reduction of spread associated with a larger σS has more of an effect in DJF NEU SAT change distributions, consistent

with the stronger performance weighting for the region and season.

In order to avoid an underestimate of uncertainty, either due to redundancy or from down-weighting independent information,470

we propose that σS should be set based on the Sij distribution in initial condition ensembles present within the multi-model
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a) DJF NEU

b) JJA MED

σS

σS

RMSE distance between model i and model j (Sij)

Figure B2. Distributions of RMSE distance (Sij) within select CMIP5 initial condition ensembles, CCSM4 (magenta) and CSIRO-Mk3-6-0

(teal), and the SMILEs, CESM1.2.2 (red), CanESM2 (yellow), and MPI-GE (green). The box element spans the 25th to 75th percentile of the

distribution; median Sij is indicated by the horizontal line within the box. The whisker element spans the full range of the Sij distribution.

Sij values are computed from a multi-model ensemble which includes all 288 members (black). The number of ensemble members in each

ensemble is indicated by N. The value of σS used for the weighting is indicated with the dashed blue line. DJF NEU distances are shown in

panel a and JJA MED distances are shown in panel b.

ensemble. We compute the Sij with the three SMILEs and set σS at 2 standard deviations below the SMILE Sij mean value

(Fig. B2). The three values are then averaged. By this metric, DJF NEU σS is 0.23 and JJA MED σS is 0.26.
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σs = 0.05 σs = 0.1 σs = 0.2 σs = 0.3 σs = 0.4 σs = 0.5 σs = 0.6 σs = 0.7 σs = 0.8
b) Change in JJA MED SAT,  [2080-2099] - [1990-2009]

σs = 0.05 σs = 0.1 σs = 0.2 σs = 0.3 σs = 0.4 σs = 0.5 σs = 0.6 σs = 0.7 σs = 0.8
a) Change in DJF NEU SAT,  [2080-2099] - [1990-2009]

Redundancy influences 
weighted distributions

few models considered independent, systematic reduction in weighting 
influences weighted distributions

Figure B3. σS sensitivity of Figure 3. σS used for each weighting is indicated in the title of each panel. Box-and-whiskers showing the

unweighted (transparent) and weighted (solid) distributions of SAT change (∆, [2080-2099]-[1990-2009]) for the CMIP5 ensemble (blue)

and ALL ensemble (CMIP5 with the 3 SMILEs; gray). The box element spans the 25th to 75th percentile of the distribution; mean SAT

change is indicated by the horizontal line within the box. The whisker element spans the 5th to 95th percentile. DJF NEU SAT change is

shown in a and JJA MED SAT change is shown b.

Appendix C: Emergent Predictor Relationships

In addition to relationships between past and future (estimated forced) trend (Fig.2), emergent relationships among the remain-475

ing predictors we use to represent climate are shown in Figure C1 and C2. Linear relationships are clear for climatological aver-

ages in both seasons; multi-model ensemble members with hotter mean state climate than other members during the historical

period also tend to have hotter mean state climate than other members in the future. Similarly, the tendency of domain-averaged

SLP values to be and remain lower or higher also persists into the future. This relationship is explored spatially in Figure C3

and C4. Mean states within SMILEs tend to cluster togehter. With the exception of JJA MED SLP climatology (Fig.C2c), the480

addition of the SMILEs does not change the linear relationship found in the CMIP5 multi-model ensemble.
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a) SAT Climatology b) SAT Variability c) SLP Climatology d) SLP Variability 

i.

ii.

i.

ii.

i.

ii.

i.

ii.

DJF 

Figure C1. Predictor relationships in DJF comparing domain-averaged climate in two historical periods, (i) 1950-1969 and (ii) 1990-2009,

to a future period, 2080-2099 in all panels. Observational estimates in the respective historical periods are indicated with a dashed black line

in each panel. a) NEU SAT climatology (◦C), b) NEU SAT standard deviation (◦C), c) SLP climatology, averaged over the predictor region

(hPa) and d) SLP standard deviation, averaged over the predictor region (hPa) are eight of the nine predictors used to determine member

performance and independence. Least-squares regression fits (solid lines) and R2 values computed for solely the CMIP5 output are shown in

blue and computed for all output (CMIP5 and the three SMILEs) are shown in black.

For variability (standard deviation over the given period), members of SMILEs differ as much from each other as from

other multi-model ensemble members in DJF (Fig.C1b,d). In JJA (Fig.C2b,d), several members of the CMIP5 multi-model

ensemble have domain-averaged variability that falls outside the distribution of SMILE members. The addition of the SMILEs

to the CMIP5 multi-model ensemble reduces correlations between historical and future variability for SAT and SLP in both485

seasons. This is particularly striking in JJA where the correlations tend to be due to the CMIP5 multi-model ensemble outliers.

Because the SLP predictor domain has a larger spatial extent than the SAT predictor domains, we also assess spatial patterns

of climatological SLP which average to the lowest and highest domain-averages values in the 1990-2009 climatological period

(Figures C3 and C4). The "end-members" illustrate the climatological emergent constraint relationship seen in Figures C1 and

C2 in terms of pattern, which is important for a field like SLP which tends to feature dipoles on basin and continental scales.490

In winter, multi-model ensemble members tend to feature similar-to-observed spatial patterns of climatological SLP in the

predictor domain, with a low pressure center over the high latitude North Atlantic and a region high pressure over the Eurasian

continent (Fig.C3). For the member with the lowest domain-average, the difference arises from a further extension of the
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JJA 

a) SAT Climatology b) SAT Variability c) SLP Climatology d) SLP Variability 

i.

ii.

i.

ii.

i.

ii.

i.

ii.

Figure C2. As is Figure C1, but for JJA. a) MED SAT climatology (◦C), b) MED SAT standard deviation (◦C), c) SLP climatology over

the predictor region (hPa) and d) SLP standard deviation over the predictor region (hPa) are eight of the nine predictors used to determine

member performance and independence.

low pressure center across Northern Europe than observed and a weaker high pressure center than observed, especially in the

vicinity of the Tibetan plateau (Fig.C3 ii,v). For the member with the highest domain-average, the difference arises from high495

pressure features over high altitude regions, such as Greenland and the Tibetan plateau (Fig.C3 iii,vi).

In summer, members differ in spatial patterns of climatological SLP in the predictor domain, though most feature the

high pressure center over the subtropical North Atlantic and lower pressure over the Eurasian continent seen in observations

(Fig.C4). The member with the lowest domain-average features the afforementioned spatial pattern, but with a higher-than-

observed amplitude i.e. both a higher North Atlantic subtropical high pressure center and a lower region of continental low500

pressure (Fig.C4 ii,v). In contrast, the member with the highest domain-average has high pressure over the entire Atlantic basin

as well as over Greenland and the Tibetan plateau (Fig.C4 iii,vi). Most importantly, in all cases, the climatological behavior of

the past continues into in the future which supports the primary tenet of an emergent constraint.

Author contributions. RK, RL, and LB conceived of and wrote the weighting scheme python package. ALM and LB implemented the

weighting scheme with contributions from RL. ALM and LB analyzed the output. ALM wrote the paper with contributions from all co-505

authors.
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Figure C3. The spatial pattern of DJF SLP climatology for: 1950-1969 (i-iii), 1990-2009 (iv-vi), and 2080-2099 (vii-viii). The observational

estimate of SLP climatology (ERA-20C) is shown in the left column (i,iv). The ensemble member with the lowest domain-average SLP

climatology for the two historical periods (GISS-E2-Rr1i1p2) is shown in the center column (ii,v,vii). The ensemble member with the

highest domain-average SLP climatology the two historical periods (IPSL-CM5B-LRr1i1p1) is shown in the right column (iii,vi,viii).
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Figure C4. As is Figure A3, but for JJA SLP climatology. The observational estimate of SLP climatology (ERA-20C) is shown in the left

column (i,iv). The ensemble member with the lowest domain-average SLP climatology for the two historical periods (CanESM2-LEr35i1p1)

is shown in the center column (ii,v,vii). The ensemble member with the highest domain-average SLP climatology the two historical periods

(IPSL-CM5B-LRr1i1p1) is shown in the right column (iii,vi,viii).
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Knutti, R., Sedlácěk, J., Sanderson, B. M., Lorenz, R., Fischer, E., and Eyring, V.: A climate model projection weighting scheme accounting

for performance and interdependence, Geophysical Research Letters, 44, 1909–1918, https://doi.org/10.1002/2016GL072012, 2017.

Kunreuther, H., Heal, G., Allen, M., Edenhofer, O., Field, C. B., and Yohe, G.: Risk management and climate change, Nature Climate

Change, 3, 447–450, https://doi.org/10.1038/NCLIMATE1740, 2013.590

Lehner, F., Deser, C., and Terray, L.: Towards a new estimate of "time of emergence" of anthropogenic warming: insights from dynamical

adjustment and a large initial-condition model ensemble, J. Climate, 109, 14 337–14 342, https://doi.org/10.1175/JCLI-D-16-0792.1, 2017.

Li, G. and Xie, S.: Origins of tropical-wide SST biases in CMIP multi-model ensembles, Geophys. Res. Lett., 39, L22 703,

https://doi.org/10.1029/2012GL053777, 2012.

Liu, C., Allan, R. P., and Huffman, G. J.: Co-variation of temperature and precipitation in CMIP5 models and satellite observations, Geophys.595

Res. Lett., 39, L13 803, https://doi.org/10.1029/2012GL052093, 2012.
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