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Observations are increasingly used to constrain multi-model projections for future climate
assessments. This study assesses the performance of five constraining methods, which have
previously been applied to attempt to improve regional climate projections from CMIP5-era models.
We employ an out-of-sample testing approach to assess the efficacy of these constraining methods
when applied to “pseudo-observational” datasets to constrain future changes in the European
climate. These pseudo-observations are taken from CMIP6 simulations, for which future changes
were withheld and used for verification. The constrained projections are more accurate and broadly
more reliable for regional temperature projections compared to the unconstrained projections,
especially in the summer season, which was not clear prior to this study. However, the constraining
methods do not improve regional precipitation projections. We also analysed the performance of
multi-method projections by combining the constrained projections, which are found to be
competitive with the best-performing individual methods and demonstrate improvements in reliability
for some temperature projections. The performance of the multi-method projection highlights the
potential of combining constraints for the development of constraining methods.

Projections of future climate are important for policymakers and stake-
holders tomake informeddecision for climate-relatedpolicy andadaptation
strategies (e.g. ref. 1). Of particular value are reliable climate projections on
regional scales, however, projections on these spatial scales are often highly
uncertain2,3. For climate model projections over the next 30–50 years, the
uncertainty stemming fromdifferentmodels and internal climate variability
on regional scales is comparable to the uncertainty from different forcing
scenarios, particularly outside the tropics4.

Attempting to reliably narrow the uncertainty and provide more
accurate projections has been a significant focus for the climate science
community. A high-profile example of this is the recent IPCC Sixth
Assessment Report, in which observational constraints were used tomodify
the raw climate model projections in order to provide the best estimates of

future climate5. One constraining approach that has been employed, in
various forms, is the application of different weights to individual model
realisations thatmake up the climatemodel projections. Theseweights have
been determined by assessing the model independence6–8 as well as by
determining how well the model simulations perform relative to observa-
tional data9–14. Other approaches involve estimating changes from external
forcing by scaling climate model responses to optimally match the changes
seen in the observational record15–17. In a recent study, part of the “European
Climate Prediction system (EUCP)” project18, six different constraining
methods developed by different research groups were all applied to obser-
vational datasets to constrain climate projections of different European
regions using standardised baselines, regions and projection periods and the
results compared19. Whilst the different constraining methods demonstrate
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some similarities in their constrained projections, particularly for median
changes, there are also some distinct differences. In particular, the different
methods produce substantial discrepancies in the uncertainty ranges of
predicted future changes, which clearly presents significant problems for the
interpretation and use of the resulting climate projections.

In addition to presenting issues for their interpretation, the uncertainty
range of the different constrained projections raises fundamental scientific
questions: do these constraining methods produce more accurate and
reliable climate projections? And if so, which methods provide the most
accurate projections? To address these questions, we designed an out-of-
sample “imperfect model” experiment. Out-of-sample testing has pre-
viously been identified as a powerful tool for testing emergent observational
constraints on future climate change (e.g. ref. 20) and has previously been
applied in studies assessing constraints on global climate sensitivity21–23 as
well as some specific aspects of large-scale atmospheric circulation and
North American hydroclimate24. Here, we test five different methods of
constraining future regional climate over Europe by applying them to the
same out-of-sample ’pseudo-observational’ datasets within a blind testing
framework; this is described in more detail in the following section.

Results
Out-of-sample testing using pseudo-observations
In this study, we took advantage of the recently available CMIP6 archive of
coupled climate simulations to act as ’pseudo-observations’ to test the dif-
ferent methods of constraining regional climate projections, which use
CMIP5-eramodel data (seeMethods for full details); for this reason,we refer
to this as an out-of-sample test. The pseudo-observational datasets were
produced by regridding the required variables from 125 different CMIP6
model simulations (taken from the historical/SSP5-8.5 simulations),
anonymising the data and restricting them to a common reference period
1860–2014. These pseudo-observational datasets were then uploaded to the
Zenodo online repository25, and five different groups used these pseudo-
observations (in place of real observations) to constrain CMIP5-era his-
torical/RCP8.5 projections. In the present study, each method was applied
independently to the pseudo-observations in an attempt to individually
provide to best constraint on the future projections for three European
climate regions. The utility of this approach is that we can then determine
how the constrained projection compares with the actual future change in
the pseudo-observation realisation. Details of the five different methods are
described in Methods and Supplementary Information; the methods are
referred to as Methods A–E in the analysis presented here.

This analysis is similar to a perfect model study but, in some senses,
represents a more difficult test of the different constraining methods. The
pseudo-observations are drawn from CMIP6, an ensemble that includes a
better representation of key processes (such as super-cooled cloud droplets
and a wider representation of aerosol-cloud interactions, for example,
ref. 26) and is also subjected to slightly different external historical and
scenario forcing than the CMIP5-era ensembles that themethods use as the
basis for their projections27. In addition, the pseudo-observations include
those fromanumber ofCMIP6 simulationswhich fall outside (on thewarm
end) of the CMIP5 ranges28. These factors lead to a tougher test of the
methods than a perfect model approach usually implies, and is more along
the lines of an ’imperfect model’ test (e.g. ref. 29). The assessment was done
in this way because it goes part of the way to replicating some of the
differences between the real world and the necessarily simplified repre-
sentations thatwe use in climate projections.At the same time, several of the
’imperfect models’ from the CMIP6 ensemble are direct successors of their
CMIP5ancestors andare thereforenot entirely independent13, aswas shown
to be the case for CMIP3 and CMIP5 generation models6.

An example of the application of one of the constraining methods
(Method D) is shown for projections of summer (JJA) temperature over
the Northern European region applied to pseudo-observational dataset
#50 is shown in Fig. 1. In this cherry-picked example, the information
from the pseudo-observational data over the reference period (i.e.
1860–2014) results in a constrained projection that has a larger warming
signal in the future. This difference is clear for the distributions of
projected mean temperature changes over the 2041–2060 verification
period (Fig. 1b). As the pseudo-observational dataset is from an out-of-
sample CMIP6 model integration, data also exists for the time period
from 2041 to 2060. This data can now be used to verify to what extent the
constrained projection is more or less accurate compared to the
unconstrained projection. In this case, the constrained projection dis-
plays a higher probability of future change happening and a smaller
ensemble mean error than the unconstrained projection.

The process outlined in Fig. 1was repeated for each of thefivemethods
and applied to the 125 different pseudo-observational datasets. The sys-
tematic approach with which we have applied the individual methods
enabledus to explore constrainedprojections by combiningoutput from the
five methods to produce multi-method projections. These multi-method
projections are a linear combination of the probabilistic projections from all
fivemethods, sampling equally from each of thefive individual constrained/
unconstrained projections to create constrained/unconstrained multi-

Fig. 1 | An example of one constrained surface-air temperature projection for the
Northern Europe (NEU) region (following the RCP8.5 scenario), by Method D
frompseudo-observational dataset #50 (c.f. Fig. 2). aThemedian (thick lines) and
90% range of the unconstrained and constrained projections ensembles are shown
along with the pseudo-observational data, all with respect to the 1995–2014 mean.
The observational period upto 2014 is shown, along with the future period of which

the 2041–2060 change (relative to 1995–2014) is used to verify the projections. bThe
distribution of predicted changes from the unconstrained and constrained projec-
tions forMethodD applied to pseudo-observational dataset #50; thefilled circles and
dotted line indicate the actual temperature change in the withheld pseudo-
observational dataset. The horizontal lines in (b) show the 5–95% range of the
constrained and unconstrained projected changes.
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method projections (see Methods for further details). Practically, this exact
approachmightbeunlikely tobedirectly adoptedbyothers; however, it does
appear to provide useful context, as we will go on to show, on where there
may be added value in constraint information beyond that captured by the
individual methods.

The constraints were performed for temperature and precipitation
in the boreal summer (JJA) and boreal winter (DJF) seasons, for the three
European “SREX” regions: Northern Europe (NEU), Central Europe
(CEU) andMediterranean (MED)1. An example of projected changes for
all the pseudo-observational datasets from the different methods is
shown for the Northern Europe region in Fig. 2. Whilst this plot is
somewhat overwhelming in detail, it is included here to demonstrate the
type of data that has been produced in this study. For each of the 125
pseudo-observational datasets, each of the methods have provided a
different probabilistic constrained projection for the 2041–2060

climatology with respect to the 1995–2014 baseline period. The range of
the projections is shown by the box-whisker plots, and for each method,
the unconstrained projection is shown in lighter colours and the con-
strained projection is shown in darker colours. Also shown are the future
changes over the verification period from the respective pseudo-
observational dataset (black horizontal lines). It is important to note, as
is evident from Fig. 2, that the different methods have quite different
unconstrained projections, owing to the different underlying CMIP5-
era models that are used by the different constraining methods (see
Table 1 in Methods). Most notable, though, is the striking diversity
across the constrained projections produced by the different methods
when applied to the different pseudo-observational datasets. Some of the
methods seem to show larger amplitude changes, such asMethod B here,
whereas for some other methods, the changes are generally more
modest, such as for Method A.

Fig. 2 | Projected summer temperature changes for the Northern Europe (NEU)
region for each of the Methods A–E, along with the multi-method projections,
for the 125 pseudo-observational datasets analysed in this study. The changes are
for the mean 2041–2060 temperature relative to the 1995–2014 mean. The box and
whiskers show the 5th, 25th, 75th and 95th percentiles of the projected changes, and
the short black line shows the median projected change. Light colours show the

unconstrained projection, and dark colours show the constrained projections. The
horizontal black line spanning each of the panels indicates the actual change cal-
culated from the withheld data from each pseudo-observational dataset, which was
used for the verification of the projections. For display purposes, the pseudo-
observations have been reordered in terms of future temperature change.
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Verification of out-of-sample constrained projections
We begin by analysing temperature projections, as the constraining meth-
ods were previously found to substantially influence temperature projec-
tionswhen applied to observations19. In the analysis that followswe consider
several verification metrics, in particular: root-mean-square error (RMSE),
Spread/Error, and continuous ranked probability score (CRPS; seeMethods
for further details of these metrics). Rank histograms of the projections are
also provided in the Supplementary Information for further context (Sup-
plementary Figs. 1–4).

Results for the summer surface-air temperature projections for each of
theEuropean regions are shown inFig. 3.Across all regions there is a general
reduction in the RMSE of the constrained projections compared with the
unconstrained projections across the different methods (Fig. 3a–c).
Importantly, even in the instances when themethods are not improving the
projections, theydonot substantially degrade theperformance (i.e.Methods
A and C in the CEU region, Fig. 3b); the only exception is Method B in the
Mediterranean region (Fig. 3c). Nonetheless, the general reduction of the
error in the constrained projections is an important result because these
methods have been applied to the pseudo-observations in a blind setting,
indicating that these methods are able to provide robust improvements.

In addition to the individual methods, we have also tested the com-
bined impact of the constraints in terms of a multi-method projection (see
Methods). The aim of analysing the multi-method projection is to gain
insight into the independent sources of skill in the constraints applied by

differentmethods, as well as examining any potential benefits of combining
different methods when applying similar constraining methods to climate
projections in other geographical regions. One way of broadly assessing the
methods and comparing the multi-method projections is to compare the
performance across all regions; to do sowe rank the accuracy of the different
methods and the multi-method in each region and also calculated an
average rank (Supplementary Table 2). Considering the average perfor-
mance across the regions in this way can provide some insight into the
typical performance of the differentmethods andwhatmight be anticipated
when applying these methods to other geographical regions.

The general reduction in RMSE in the constrained summer tem-
perature projections is also clear in the multi-method projection for all
three European regions (i.e. Fig. 3a–c). The multi-method projection
performs very similarly to the best individual constraining method in the
Northern Europe and Central Europe regions and outperforms the best
individual constraining method in the Mediterranean region, despite the
poor performance of one of the constituent methods for the Mediterra-
nean. The multi-method projection has the highest average rank across
the three regions (where higher ranks imply more accurate projections),
followed by Method D then Method B. Therefore, the multi-method
projections seem to perform well across the three European regions for
RMSE—indicating that, at least in terms of RMSE, the multi-method
projections are are not strongly susceptible to one individual poorly
performing constraining method.

Fig. 3 | Verification of the unconstrained and
constrained projections across all 125 pseudo-
observations for the 2041–2060 projected summer
(JJA) temperature changes in each of the Eur-
opean SREX regions. a–c Root-mean square error
(RMSE); a lower value implies a more accurate
ensemble mean projection. d, e Spread/Error ratio;
values less than one mean the projections are over-
confident and values greater than one mean the
projections are underconfident. g–i Continuous
ranked probability score (CRPS); a lower value
demonstrates a more accurate probabilistic projec-
tion. The dots show the measured values and the
lines indicate the 95% confidence intervals based on
a bootstrap resampling (see Methods).
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In terms of Spread/Error ratio, the unconstrained and constrained
projections are all overconfident for European summer temperatures (Fig.
3d–f). It should benoted that substantial overconfidence cannot really occur
in simpler “leave-one-out” testing and exemplifies the more difficult test
provided by the out-of-sample approach used here. There are some clear
improvements (i.e. Spread/Error ratio closer to 1) in the reliability of the
projections for some of the individual methods, especially Method B in the
Northern Europe and Central Europe regions and Method C in the Med-
iterranean region, however, the reliability worsens for Method A in the
Northern Europe and Central Europe regions. Overall, the multi-method
projection seems to perform well, being more reliable than any of the
individual methods in the Northern Europe and Central Europe regions in
terms of the Spread/Error ratio. A major exception, however, is the
underconfidence of the constrained multi-method projection in the Med-
iterranean region (i.e. Spread/Error ratio≫ 1); this seems to be related to the
poor performance of the Method B constraint in this region, which doesn’t
greatly affect the mean error of the constrained multi-method projections
(i.e. Fig. 3c) but hugely inflates the spread of the multi-method projection,
resulting in substantial underconfidence in the projection in terms of
Spread/Error.

The overall performance of the full probabilistic projections can be
assessedwith the continuous rankedprobability score (CRPS), shown inFig.
3g–i. The constraining methods generally improve the accuracy of the
summer temperature projections in terms of CRPS, again with the notable
exception ofMethod B in theMediterranean. Some of these improvements,
however, seem to originate fromdifferent sources. ForMethodD andE, the
improvements seem to be almost entirely associated with the reduction in
the RMSE (i.e. Fig. 3a–c), whereas the improvements for Method B in
Northern and Central Europe (Fig. 3g, h) also have a contribution from
changes in the spread of the projection (i.e. Fig. 3d, e). To compare the
overall performance of the different methods and the multi-method pro-
jections across all regions examinedhere,we again rank the accuracy in each
region and calculated an average rank (see Supplementary Table 2). The
multi-method projection has the highest average rank across the three
regions,which suggests that, basedon this out-of-sample test, that theremay
be more information available to constrain projections than is currently
captured in any of the individual methodologies.

The CRPS of the summer precipitation projections is shown in
Fig. 4a–c (see Supplementary Fig. 5 for other metrics). In contrast to the
summer temperature projections, the constraining methods do not
demonstrate any substantive improvements in predicting the future chan-
ges. Most of the methods actually have very similar verification measures,
indicating that the constraining methods are having little impact on the
accuracy of the projected changes for summer precipitation. The exception
here is Method E, which exhibits a substantial degradation in performance
in the Central Europe and Mediterranean regions (Fig. 4b, c), which is
associated with a significant increase in the projection RMSE (Supple-
mentary Fig. 5). The multi-method also shows no substantive improve-
ments in RMSE, similar to the individual methods.

The verification for projections of European winter are in shown in
terms of CRPS in Fig. 4d–i (see also Supplementary Figs. 6, 7). For winter
temperature projections, the majority of the constraining methods show
improvements for the Mediterranean region (Fig. 4f), which are broadly
associated with both a decrease in the projection RMSE and an improve-
ment in ensemble spread, with the constraining methods producing less
overconfident projections (Supplementary Fig. 6). The exception isMethod
A, for which the constrained projections are worse than the unconstrained
projection in all regions.Methods B–E showmoremodest improvements in
general for the Northern Europe and Central Europe regions than they do
for theMediterranean (Fig. 4d, e); themost substantial instance of amethod
degrading the accuracy of the projections is for Method E in Northern
Europe. The multi-method constrained projections show a consistent
improvement (albeit more modest than in summer); ranking the accuracy
of the constrained projections we find that, in terms of average rank across
all three European regions (i.e. Supplementary Table 2), the multi-method

constrained projections perform better than any individual method for
winter temperature projections. It should be noted, however, that themulti-
method is not more accurate than all individual methods in all regions,
which has implications for potential users of these climate projections on
regional scales (further implications are outlined in the Discussion sec-
tion below).

For the winter precipitation projections, there is no substantial
improvement for the constrained projections (Fig. 4g–i), similar to what we
found for the summer precipitation projections. However, unlike in the
summer precipitation projections, there are many instances where the
constraining methods noticeably degrade the accuracy of the projections.
This is particularly the case in the Northern Europe region, where even the
multi-method constrained projection exhibits inferior performance to the
equivalent unconstrained projection.

A noteworthy feature of the CRPS verification is the different accuracy
of the unconstrained projections. This difference stems from differences in
the underlying models/simulations used by each of the methods (see
Methods and the example in Fig. 2). From theCRPS verification (i.e. Figs. 3,
4), higher accuracy in the constrainedprojections tends tobe associatedwith
higher accuracy in the underlying unconstrained projections across the
different methods. To account for this, we also calculated a continuous
ranked probability skill score (CRPSS; see Methods), which is defined to
measure the relative improvement of the constrained projections compared
to theunconstrainedprojections (SupplementaryFig. 8). In termsofCRPSS,
substantial relative improvements are shown by the majority of the con-
straining methods for summer temperatures: the relative improvements of
Methods B, D and E are comparable or better than the multi-method
projections in the Northern Europe and Central Europe regions and
Methods C, D and E show improvements comparable with the multi-
method projections in the Mediterranean region. There are also clear
relative improvements for several methods for winter temperature projec-
tions that are comparable to the relative improvements seen in the multi-
method projections (Supplementary Fig. 8g–i). Whilst some methods
demonstrate comparable relative improvements to the multi-method pro-
jections of future regional temperatures, noneperform significantly better in
any of the regions for either summer or winter. The improvements mea-
sured in terms of CRPSS are anti-correlated with the accuracy of the
unconstrained ensemble (i.e. CRPSunconst; seeMethods and Supplementary
Fig. 9), such that larger improvements are found when the unconstrained
ensemble is less accurate. Therefore, the relative improvement of the con-
strainedmulti-method projections is particularly notable, as the accuracy of
the unconstrained multi-method projections is relatively high compared to
the individual methods (i.e. Figs. 3g–i, 4d–f).

Overall, the out-of-sample verification reveals that, whilst not uni-
versal, the constrained projections using the different methods do tend to
improve the projections for European regional temperatures. The con-
straints exhibit the most substantial impact for summer temperature pro-
jections, though some improvements are also demonstrated for the winter
temperature projections. For precipitation, the constraints do generally not
improve the projections and for winter precipitation the accuracy of the
projections is even degraded in many cases.

Understanding the performance of the constrained projections
To investigate sources of skill in the different methods for the different
combinations of variable, season and region, we examined the correlation
between the constrained projections and the future changes in the pseudo-
observations (Supplementary Fig. 10). Each correlation was calculated
between 125 pairs of values for the constrained ensemble mean projected
change and the actual change in the model realisation used for the pseudo-
observations. For summer temperatures—and also winter temperatures for
most methods—the constraining methods have projections that are posi-
tively correlated with the future changes in the pseudo-observations,
demonstrating that themethods are able to capture some of the variation in
future changes across the different pseudo-observations. For precipitation,
the correlations are generally lower and even negative for many methods/

https://doi.org/10.1038/s41612-024-00648-8 Article

npj Climate and Atmospheric Science |            (2024) 7:95 5



regions, consistent with the lack of improvement found for the constrained
projections (i.e. Fig. 4). The ensemble means of the constrained projections
are generally positively correlated to one another for summer and winter
temperatures (shown in Supplementary Fig. 11). However, the correlation
coefficients are less than r ≈ 0.7 in most cases, indicating that there is sub-
stantial independence between the different methods (as also evident in
Fig. 2). In addition we examined how this is linked to global changes by
calculating correlation between the ensemble mean of the constrained
projections and the globalmean surface temperature (GMST) change in the
pseudo-observations (Supplementary Fig. 12). The correlations show that
the constrained changes are clearly related to the change in GMST in some
instances. For the summer temperatures, there is the strongest link, but
interestingly the constrained changes are not so strong for the other vari-
ables/seasons, with the overall behaviour being very similar to the correla-
tions between the projected and actual regional changes (i.e. Supplementary
Fig. 10). This indicates that the methods are often picking up patterns of
regional changes that are closely linked to global changes, albeit implicitly
for the methods that do not include global data (see Methods).

The independence of the constraining methods and their positive
correlations with the future change in the pseudo-observations (e.g. Sup-
plementary Fig. 10) gives a clue as to why the multi-method projections
perform relatively well: the different methods capture different signals over
the common reference period (i.e. 1860–2014) from which they provide
useful constraints, which, when combined provide a projection competitive

with the best individual method. It is notable that the multi-method pro-
jections of regional summer temperatures not only have relatively high
correlations with the future change in the pseudo-observations—at least as
high as all the individual methods across the three European regions—but
the multi-method projections also produce the most reliable probabilistic
projections in terms of Spread/Error ratio for two of the three European
regions. An exception being the Mediterranean region, where one poorly
performing method severely degrades the Spread/Error (i.e. Fig. 3d–f).
Combining multiple predictions has also been found to produce improved
reliability in the analysis of seasonal forecasts, in which combiningmultiple
models generally performs better than any individual model30,31. The
improvement in reliability for the multi-method summer temperature
projections in the Northern and Central European regions likely occurs
because the individual constraining methods are overconfident and lacking
in spread (e.g. Fig. 3), therefore, combining the projections inflates the
spread and the reliability of the multi-method projection is improved.

The impact of the multi-method approach is clear when examining the
ability of the constrained projections to capture the more unlikely outcomes
in thepseudo-observations.Wecalculatedhowoften theactual changes in the
pseudo-observations fell below the first percentile and above the 99th per-
centile of the different constrained projections (Supplementary Figs. 13–16).
Themethodsdodemonstrate someability to improve theprojections of these
outlier cases, however, there are stillmanymore caseswhen the change in the
pseudo-observations falls outside the 1–99%range for all themethods. This is

Fig. 4 | Verification of the unconstrained and
constrained projections across all 125 pseudo-
observations, in terms of continuous ranked
probability score (CRPS), for the 2041–2060
projected changes in each of the European SREX
regions. a–c Summer precipitation changes;
d, e winter temperature changes; g–i winter pre-
cipitation changes. The dots show the measured
values and the lines indicate the 95% confidence
intervals based on a bootstrap resampling (see
Methods).

https://doi.org/10.1038/s41612-024-00648-8 Article

npj Climate and Atmospheric Science |            (2024) 7:95 6



especially the case for temperature outcomes above the 99th percentile of the
projections, likely due to the higher climate sensitivity in the CMIP6 models
used as the pseudo-observations (i.e. Supplementary Fig. 12). For the multi-
method projections; however, changes outside the 1–99% range are all
reduced to reliable levels in almost all cases (i.e. O(1%)). For the summer
temperatures above the 99th percentile of the projections, the improvement
stems from the constraints provided by Methods B and E. These methods
differ from the other methods in that they scale the projected signals (rather
than by weighting individual members; see Methods), demonstrating one
utility of the scaling methods. Overall, the combination of the different
overconfident projections results in amulti-method ensemble projection that
is remarkably reliable when it comes to projecting the more unlikely out-
comes, which is even evident by visual inspection of the raw constrained
multi-method projections (i.e. Fig. 2).

The CMIP6 models used as pseudo-observations in these out-of-
sample tests have been shown to generally exhibit higher levels of climate
sensitivity to CO2 increases than the CMIP5-era models used for the con-
strained projections here32,33 and project higher levels of warming over
Europe during the 21st century28. To examine how the results dependon the
equilibrium climate sensitivity of the models used as pseudo-observations,
we split the 125 pseudo-observations into subsets that were within the
CMIP5 range (n = 38) and above the CMIP5 range (n = 87), using model-
specific data equilibrium climate sensitivity values from32. The distributions
of the changes in the pseudo-observations and the subsets of different cli-
mate sensitivities are shown in Supplementary Figs. 17, 18, and the ver-
ification statistics for the high and low-sensitivity subsets are shown in
Supplementary Figs. 19–24.

The accuracy of the projections is generally better (i.e. lowerRMSE) for
the lower sensitivity subset compared to the higher sensitivity subset, but the
qualitative improvement seen across all models (i.e. Figs. 3, 4) is evident in
both subsets (Supplementary Figs. 19, 20). The relative improvement (in
terms of CRPSS), however, is much larger in the higher climate sensitivity
subset and is particularly clear for the temperature projections (Supple-
mentary Figs. 21, 22). This indicates that themethods are able to detect these
stronger signals over the common reference period (1860–2014), and the
constraints have a larger impact on these high-sensitivity models. In con-
trast, for the lower sensitivity models, the pseudo-observations are already
much closer to the uncalibrated ensembles—somewhat by definition since
they are models that have similar characteristics—and as a result, there are
lower errors in the calibrated projections.

The overconfidence seen in the temperature projections (i.e. Fig. 3d–f
andSupplementaryFig. 6) is primarily a featureof thehigh-sensitivitymodels
(Supplementary Figs. 23, 24), which are substantially different from the
CMIP5models thatmakeup theunconstrainedprojections in themajority of
the projections analysed here. This is perhaps unsurprising given that the
methods which use a weighting approach (see Table 1, Methods) rely on an
underlying ensemble that does not have as many warm outcomes as in the
high climate sensitivity models (i.e. Supplementary Figs. 17, 18). The differ-
ences in the responses to the forcing scenarios used in the unconstrained
projections (i.e. historical/RCP8.5 from CMIP5) compared to the pseudo-
observations (i.e. historical/RCP8.5 fromCMIP6) likely generate thedifferent
responses and contribute to the apparent overconfidence34. These differences
in the underlying projections/pseudo-observations indicate that this out-of-
sample verification is a stiff test of the constrainingmethods.However, a large
majority of the pseudo-observational (CMIP6) future changes are within the
range of theCMIP5 future changes (Supplementary Figs. 17, 18, 25). Itwould
therefore not be impossible for constraining methods based on CMIP5
weighting to capture the future changes, however, the signals in the higher
sensitivity models over the observational period clearly have features that are
notwell captured in the underlyingCMIP5models and/or are not accounted
for in the methods examined.

Observationally constrained projections of European climate
Our analysis to this point shows that the constraining methods provide
useful changes to future projections when applied to pseudo-observations,

particularly for summer temperatures over Europe. Therefore, assuming
that similar improvements may be possible when applied to the real-world
climate system,wehave some justification for applying the constraints to the
real observations for European summer temperatures, as in ref. 19.

Constrained projections of the summer temperature change for
2041–2060 for each of the European regions are shown in Fig. 5. Based on
our prior analysis, we have reason to expect the multi-method projection
that has been constrained with observations to be at least as accurate as any
of the individual methods. The observationally constrained multi-method
projection predicts a median warming of less than 2K for the Northern
Europe region, but there is substantial uncertainty, with changes of less than
1K and upto 3K within the 5–95% range of outcomes. For the Central
Europe and Mediterranean regions, the observationally constrained multi-
method projections predict amedianwarming of over 2K and interestingly,
the projections have a markedly narrower spread compared with the
respective unconstrained projections for Northern Europe. Whilst the dif-
ference between the constrained and unconstrained projections when the
methods are applied to real observations is fairly modest, it is important to
note that the out-of-sample tests reveal that the difference produced by the
constraining methods could potentially have been much larger (e.g. Fig. 2).
That the influence of the constraining methods is more muted reveals that
the signals in the observational data are more consistent with the uncon-
strained (CMIP5-era) ensembles than many of the pseudo-observational
(i.e. CMIP6) datasets.

Discussion
In this study, we have demonstrated an assessment of different methods of
constraining future regional climate projections, using an out-of-sample
testing framework. The target of this study was climate projections for
European regions but the methods themselves and the results presented
here are likely to be relevant for other regional climate projections. Overall,
the constraining methods demonstrate some clear improvements over the
unconstrained projections of European temperatures when applied to 125
pseudo-observational datasets. The summer season demonstrates the
greatest improvements, but there are also improvements to the winter
temperature projections. For precipitation projections, however, there is
little evidence that any of the constraining methods provide any substantial
and consistent improvement. Constrained regional precipitation projec-
tions in the extratropics should, therefore, be treatedwith caution and could
be more likely to have a lower projection accuracy than unconstrained
projections. None of this had been clearly demonstrated prior to this study,
therefore these are important results for the use and development of
observational constraints to future regional climate projections.

The superior performance of the constraining methods when applied
to regional temperature compared with regional precipitation, particularly
for summer temperatures, is something that might have been anticipated
but was not clear prior to this out-of-sample study. The reason for the
efficacy of the methods when applied to temperature projections compared
with precipitation projections is likely linked in part to the signal-to-noise
ratio of the climate change signal in the observational period. For summer
temperatures, the signal-to-noise ratios are relatively large over Europe, and
by some estimates, the climate change signal has ’emerged’ from the noise
over the observational period (e.g. refs. 35,36). For winter temperatures, the
larger internal variability (that is itself likely underestimated in the
CMIP6simulations that are usedhere as pseudo-observations37) reduces the
signal-to-noise ratio over the observational period, though there are evi-
dently still substantial signals to constrain upon and the constraining
methods do broadly provide an improvement to the projections, particu-
larly the multi-method projection (i.e. Fig. 4d–f and Supplementary
Table 2). There are generally much lower signal-to-noise ratios for regional
precipitation over the observational period and the methods struggle to
identify behaviour onwhich to accurately constrain future projections. This
particularly interesting because in observations there is a drying trend38 that
wemight expect to provide a useful constraint, however the methods tested
here do not demonstrate they are able to effectively capture this apparent
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signal; this warrants investigation in future studies. It is worth noting that
theremay be benefits in future studies applying themethods over the earlier
historical period to predict the later part of the observational record, albeit
with some limitations due to the small sample size, and that models use
observations for tuning during their development. The results from the
constraining methods examined in this study provide a useful benchmark
for future developments in the constraining methodologies.

Our results do not mean that constraining precipitation projections is
not possible, of course, and improved methods and models applied to a
different observational periodmay lead tomore useful constraints for future
projections. A reason why the methods might struggle to constrain pre-
cipitation is that none of the methods directly constrain large-scale circu-
lation changes. In the extratropics, and Europe in particular, changes in
large-scale circulation strongly control precipitation variability and changes
on decadal timescales (e.g. refs. 39,40). For example, future Mediterranean
drying has been attributed to forced changes in large-scale circulation in
several modelling studies41–43. However, none of the constraining methods
tested in this study are targeted at directly constraining circulation changes,
and some omit dynamical variables entirely (see Methods). Therefore, it is
clear that any precipitation changes that are driven by circulation changes
would not be well detected by the methods used in this study. Exploring
possible observational constraints on such dynamical changes is an
important topic of future research and the out-of-sample framework in this
study could be used in future studies to assess if other constrainingmethods
can provide robust improvements.

Whilst this study allows us to compare how the different methods
perform relative to one another, an important result is that, in terms of
average performance evaluated across all three European regions, the
constrainedmulti-method temperature projections are broadly competitive
with any individual method (i.e. Figs. 3, 4d–f, Supplementary Fig. 6 and
Supplementary Table 2). The multi-method projections seem to produce
relatively accurate and reliable projections for twomain reasons. Firstly, the
projections identify different aspects of the behaviour over the common
reference period, and these combine to provide more accurate projections,
whilst compensating errors largely cancel out. Secondly, most of the indi-
vidual projections are overconfident and combining the different ensembles
can increase the spread of the projection and reduce the reliance on any
single overconfident projection; this is perhapsmost notablewhen assessing
themoreunlikely outcomes,which rarely fall outside the 1–99%range of the
multi-method projections. These improvements in reliability in the con-
strainedmulti-method projections are analogous to the improvements seen
in multi-model initialised forecasts on shorter timescales (e.g. refs. 30,31).
The use of all the methods analysed here to produce a multi-method

projection is not straightforward for individual climate applications, how-
ever, approaches utilising several constraining methods could be used for
operational purposes without too much difficulty. Moreover, the relative
success of the multi-method approach, in terms of accuracy and reliability
for many of the constrained temperature projections analysed here, clearly
demonstrates that improvements to the individual constraining methods
are achievable.

In this comparison of different regional projection methodologies, we
made use of newer generation climate projectionswhich provided a tougher
test of constraints based on earlier generation simulations (both because the
out-of-sample simulations included future changes outside the earlier
ranges and because these introduced historical forcing differences that are
likely to be akin to constraining simulations based on real-world data).
However, some caution is needed in applying these methods to the real
world, as we are not able to control for potential common model biases in
both the constrained projections and the CMIP6 simulations used for the
out-of-sample tests. For example, almost all current simulations fail to
capture the lack of recent warming in the east Pacific44, whichmay be linked
to the suppression of stronger climate feedbacks that could re-emerge in
future climate change (e.g. refs. 45,46). Thepotential impact of biases such as
these are a challenge for all climate projections (constrained or otherwise),
and represent a context which one must bear in mind when producing
future climate projections that inform decision making. Nevertheless, the
assessment of methods to constrain climate projections, taken here, repre-
sents a step forward in understanding the potential merit (or otherwise) in
an imperfect model evaluation, which exposes the various methods to a
more difficult test of their potential skill. Findings, such as where these
methods don’t add skill and identifying where combining underlying
information captured in different methods may add skill, represent an
important step forward in how we develop, test and make use of these
constraining methods.

The focus of this study has been on examining the impact of these
different constraining methods, but a question remains over how these
resultsmight influence the application of constraints by practitioners. Given
thatmanyCMIP6models tend to showmorewarming thanpreviousmodel
generations, the so-called ‘hotmodel’ problem47, there is growing consensus
that it is necessary to apply observational constraints to make regional
climate projections. The best approach for practitioners will likely depend
on their specific application and focus. For example, those interested in
summer temperature projections for Central Europe (CEU) might choose
to apply one of the best-performing individual methods, B or D perhaps, if
they are primarily interested in the general accuracy of the probabilistic
projection and the relative improvement of the method (i.e. measures of

Fig. 5 | Projected summer temperature changes for each method constrained
using real observational products, along with themulti-method projections. The
changes are for the mean 2041–2060 temperature relative to the 1995–2014 mean.

The box and whiskers show the 5th, 25th, 75th, and 95th percentiles of the projected
changes, and the short black line shows the median projected change for aNorthern
Europe, b Central Europe and cMediterranean regions.
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RMSE, CRPS and CRPSS). However, these methods individually demon-
strate clear overconfidence in termsof their overall distributions (i.e. Spread/
Error ratio, Fig. 3e) and in terms of capturing extreme outcomes within the
projection (i.e. outside the 1–99% range, Supplementary Fig. 13b, e),
therefore a practitioner primarily concerned about such outcomes might
opt to combine methods within a multi-method projection to reduce the
overconfidence in the projections (e.g. Fig. 3e). Whilst this example
demonstrates how some of the choices ofmethodology could depend on the
specific application and focus, our study highlights that for regional tem-
perature projections over Europe there is likely benefit in applying obser-
vational constraints. However, we find that there is little benefit in
constraining European precipitation projections using these methods. This
study can also provide some guidance to practitioners applying observa-
tional constraints to other geographical regions. The results here indicate
that, in the absence of a specific comprehensive out-of-sample study, where
possible combining multiple constraining methods may be a more rea-
sonable approach than selecting an individual method.

There is growing demand fromgovernments of different countries and
regions for their own customised climate projection products to aid adap-
tation and improve resiliency to future climate outcomes, for example, the
‘UK Climate Projections 2018’ (UKCP18)48 and ‘Swiss Climate Change
Scenarios 2018’ (CH2018)49. Our study demonstrates that such regional
constrained projections are likely to add value over using unconstrained
climate model output. One takeaway message from our results is that
incorporating information froma rangeof sources—as demonstrated by the
performance of the multi-method projections here—is important when
developing constraints andoffers thepotential to further improve individual
constraining methods.

Methods
Overview of constraining methods
Five different constraining methods were assessed in the study. Each of the
methods was assigned a letter between A–E for the purpose of the analysis.
Table 1 shows a summary of the different methods and highlights some
important features and assumptions that the methods rely upon. Further
details of the specificmethods are provided below and a further comparison
of some of the methods characteristics is shown in Supplementary Table 1.

It is important to note that the Methods use different underlying
ensembles to constrain. Some of these differences are unavoidable con-
sequences of the different methodological approaches. For example, ASK
needs single-forcing experiments to identify patterns, that are available for
only a small subset of CMIP5. Whilst smaller ensembles are less likely to
adversely impact ASK (which scales ensemble mean fingerprints to be
consistent with observed changes), it was felt that limiting othermethods to
this same subset would limit their predictive capabilities. So, whilst some
efforts were made within the participating groups to standardise uncon-
strained projections, evident differences remain. The impact of different
underlying ensembles was explored in ref. 19. Further details are provided
below, and the list of underlying models is included in the Supplementary
Data File.

Method A (REA)
The reliability ensemble averaging (REA10) method applies a weighting
scheme based on model performance and independence. For the model
performance component, REA applies weights on a variable-by-variable
basis, expressed in terms of the bias of themodel control runwith respect to
observations (specific models and number of ensemble members are listed
in Supplementary Data). Model convergence is treated as an indication of
projection confidence, effectively downweighting outliers in projection
space9,50. The value of the weights increases as the model biases and dis-
tances. REA’s goal is tominimise the contribution of simulations that either
perform poorly in the representation of present-day climate or provide
outlier future simulations with respect to the other models in the ensemble
in order to reduce the uncertainty and increase the skill of climate
projections. T
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Method B (CALL)
The CALL method involves the ’CALibration of Large-ensembles’
using available observational data following the approach described in
ref. 51 and which was included in the multi-method comparison study
of ref. 19. The CALL method uses an approach that considers the
observational changes and variability of the target variable time-series
(computed over the region of interest) and uses this information to
calibrate a single model large ensemble projection, in this case data
from the CESM-LENS52. The time-series from the large ensemble and
the observations are first separated into dynamical and residual
components39,53; the dynamical and residual time-series are then
separately calibrated towards the dynamical and residual observational
target time-series using homogenous Gaussian regression (a simplified
version of EnsembleModel Output Statistics54) in which the calibration
finds an optimally scaled ensemble mean anomaly and ensemble var-
iance; finally, the calibrated dynamical and residual ensembles are
combined to produce an observationally constrained ensemble pro-
jection. This approach corresponds to the ’HGR-decomp’ method
described and analysed by ref. 51. Since this method relies on a single
model large-ensemble, it’s unconstrained projections can be quite
different from those in the other methods for some regions/variables
(e.g. Fig. 2).

Method C (ClimWIP)
ClimWIP assigns weights to models in the ensemble to produce
weighted, reliable percentiles. Each weight is designed to quantify a
model’s performance in a given region and for a given target variable as
well as its independence from the othermodel’s in the ensemble based on
themodel’s output7,8,13. Earlier versions of ClimWIPhave been applied to
regional projections of different variables such as sea ice8,
temperature11,55, ozone56 and precipitation57 based on different genera-
tions of CMIP as well as large ensembles8,12. Recently, this approach has
also been applied for the first time on a global scale19, for the weighting of
downstream regional climate projections58, and to the prediction hor-
izon spanning decadal predictions and climate projections59. Here, we
use a version of ClimWIP that is largely consistent with11 and also
included in the multi-method comparison presented in ref. 19 (specific
models and number of ensemble members are listed in Supplementary
Data). The original setup was updated to include temperature trend as a
predictor formodel performance based on the results from ref. 13 and to
use larger scale metrics to establish model dependence as suggested by
ref. 12. More details can be found in the corresponding publications,
here we limit the further description of ClimWIP to several properties
important in the context of this study:
1. As aweightingmethod, ClimWIP cannot shift the distribution outside

of its original, unweighted range, limiting the possible reduction of the
error for CMIP6 pseudo-observations lying outside the full
CMIP5 range.

2. The independence part of the weighting is not mainly intended to
optimise performance nor to reduce the uncertainty but to account for
structurally similar models (i.e. models with a large overlap in their
source code) but it is still included here as it accounts important aspect
of multi-model projections and is an integral part of ClimWIP.

3. A perfect model test comparable to the one performed here has
already been carried out for the case of global mean temperature
change by ref. 13, who found an increase in the CRPS by 10–20%. In
their assessment, ref. 13 excludes models that are related by a direct
line of development between CMIP5 and CMIP6 in order to
maximise the ’out-of-sampleness’ of the pseudo-observations. This
was not done for this study for simplicity and to stay consistent with
the other methods. Sensitivity experiments using the setup from
ref. 13 show that not accounting for closely related models might
bias the CRPS high by a few percentage points in the median while,
in turn, also increasing the risk for negative skill changes, so that the
overall effect can be considered small.

Method D (KCC)
TheKriging forClimateChange (KCC)methodhas beenpreviously applied
to global mean warming14 and regional warming60,61 and works in three
steps. Here, we apply the same version that was used by the refs. 11,55. First,
the forced response of each CMIP5 model is estimated over the whole
1860–2100 period (after concatenation of historical simulations with cor-
responding 21st-century projections). In order to also get attribution
statements, the responses to ALL (all forcings) and NAT (natural forcings
only) are estimated separately (specific models and number of ensemble
members are listed in Supplementary Data). Second, the sample of the
forced responses from available climate models is used as a prior of the
forced response within each pseudo-observations, assuming that ’models
are statistically indistinguishable from the truth’. Third, pseudo-
observations are used to derive a posterior distribution of the past and
future forced response given the pseudo-observations. This Bayesian
method can be summarised using the following equation:

y ¼ Hx þ ϵ;

where y is the time-series of pseudo-observations (a vector), x is the time-
series of the forced response (a vector), H is an observational operator
(matrix), ϵ is the randomnoise associatedwith internal variability (a vector),
and ϵ∼N ð0;ΣyÞ, where N stands for the multivariate Gaussian
distribution. Climate models are used to construct a prior on
x : ΠðxÞ ¼ N ðμx;ΣxÞ. Then the posterior distribution given pseudo-
observations y can be derived as pðxjyÞ ¼ N ðμp;ΣpÞ.

μx and Σx are estimated as the sample mean and covariance of
the forced responses from the CMIP5 models. We use a mix of auto-
regressive processes of order 1 (AR1) tomodel internal variabilitywithinΣy.
The intrinsic variance is derived frompseudo-observations after subtracting
the CMIP5 multi-model mean estimate of the forced response. The full
documentation of themethod is detailed by ref. 61.Unlike someof the other
methods, KCC was originally designed to assess the forced response only.
Here, the uncertainty related to internal variability is included to ensure
consistency with other approaches. To do this, internal variability is esti-
mated from pseudo-observations, after subtracting the estimated forced
response. Then, random drawings of internal variability are added to the
projected forced values to get projection ranges, including full uncertainty.

Method E (ASK)
The ‘Allen–Stott–Kettleborough’ ASK method15–17 applies a detection and
attribution approach to disentangling the impact of external forcing(s) and
internal variability on observed trends. The method assumes that the true
observed climate response is a simple linear combination of one or
more individual forcing fingerprints. Implementations of these methods
have been found toproduce overconfident constraintswhensignal-to-noise
ratios are low in the observed trends62. This particular implementation of
ASK largely follows its application in recent studies within a regional
European context19,63. The model fingerprints are comprised of the annual
multi-model mean time-series (1950–2014), spatially averaged over dif-
ferent European regions (NEU, CEU and MED), and conjoined following
normalisation by ameasure of the region’s internal variability. A total-least-
squares (TLS) regression is used to estimate the scaling factor(s) required to
scale the model fingerprints to match the amplitude of the observed
response, and accounts for uncertainty in both the observations and
modelled response to each of the forcings due to internal variability. Con-
fidence intervals were estimated by adding equivalent samples from the
piControl simulations to both the noise-reduced fingerprints and pseudo-
observations, and then recomputing the TLS regression (10,000 times) in
order to build a distribution of scaling factors, from which the 5th-95th
percentile range is computed.

For each of the 125 pseudo-observational datasets of temperature, a
two-signal TLS regression using the all-forcing historical and single-
forcing (GHG-only) historical multi-model mean fingerprints (from 25
ensemble members, 9 different models) yielded the GHG scaling factor
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(and uncertainty range) used to constrain the future temperature pro-
jection (specific models and number of ensemble members are listed in
Supplementary Data). This method was used as single forced CMIP5
projections are not available, which is a known problem when using
CMIP5 simulations to constrain future projections using this type of
detection and attribution approach64. Due to the lower signal-to-noise in
European regional precipitation trends (compared to temperature), for
each of the pseudo-observational datasets of precipitation, a one-signal
TLS regression using the all-forcing historical multi-model mean fin-
gerprint (from 81 ensemble members, 34 different models) yielded
the all-forcing scaling factor that was applied as a constraint on the
future precipitation projection. For each of the pseudo-observations, if
the scaling factor resulting from the TLS regressionwas determined to be
significantly negative (including the full 5–95% uncertainty range),
suggesting an unphysical scaling, the resulting constraint was rejected
and not supplied for further analysis.

Multi-method projection
The multi-method projection (MMP) is a simple linear combination of the
probabilistic projections from all five methods (i.e. Methods A–E), all
equally weighted. To do so, 5000 equally likely outcomes were randomly
resampled from the each of the methods (for some of the methods many
of these are duplicates) and combined to produce an MMP ensemble of
25,000, the large number number of samples are used so that we can fairly
combine the different methods. The results are not sensitive to the exact
number of samples that make up theMMP. This method was used for both
the constrained and unconstrained projections. The unconstrainedMMP is
not in itself particularly meaningful as it includes several duplicated CMIP5
ensembles in some cases because these are used in multiple methods;
nonetheless, the unconstrainedMMP is included in some of the analysis to
act as a baseline from which to examine the relative performance of the
constrained multi-method projection.

Pseudo-observational datasets
The pseudo-observational datasets were taken from 125 available
ensemble members from the Coupled Model Intercomparison Project 6
(CMIP6) archive that had data for all variables required for the historical
(1860–2014) and ssp585 (2015–2099) experiments. The datasets were
downloaded and regridded to a common 2.5° × 2.5° grid. Each ensemble
member were then anonymised by stripping most of the metadata from
the netCDF files and labelled with a random number from 1 to 125. Data
from 1860 to 2014 in these pseudo-observational datasets were then all
uploaded to the online public Zenodo archive25 and made available to the
different groups. The future portion of the pseudo-observations was held
back and revealed onlywhen the projections from all groups/methods had
been produced, to ensure an out-of-sample test. The specific CMIP6
model and member that has been randomly assigned as each pseudo-
observation are listed in Supplementary Data.

Verification metrics
The strength of the out-of-sample projections is that the probabilistic pro-
jections and the actual change in the pseudo-observations can be used to
establish the accuracy and reliability of the constraining methods. Here we
calculate the following verification metrics:
• Root-mean-square error (RMSE), which measures the accuracy of the

ensemble mean projection with respect to the actual future change in
the pseudo-observations and is calculated as:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
N

X

N

i¼1

ðf i � oiÞ
2

v

u

u

t ;

where f i andoi are the ensemblemeanprojected change andobserved
change, respectively, for pseudo-observation i.

• Spread/Error, which is the ratio of the spread of projected changes
(measured by the standard deviation) and the ensemble mean error
(e.g. ref. 65); a ratio of less than one indicates an overconfident pre-
diction,whereas a ratio of greater thanone indicates anunderconfident
prediction. Specifically, it is calculated as:

Spread=Error ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
N

PN
i¼1 s

2
i

q

RMSE
;

where s2i is the sample variance of the projected ensemble change (i.e.
Fig. 1b).

• Continuous ranked probability score (CRPS), which measures the
difference between the cumulative density function of a probabilistic
prediction and the verifying observation (e.g. refs. 66,67). The CRPS is
lower when the probabilistic projections are more accurate and is
commonly used in weather forecast evaluation (e.g. ref. 68); the CRPS
can be considered a generalised version of the RMSEmetric applied to
full probabilistic predictions. The CRPS for the projection of each
pseudo-observation i is calculated as:

CRPSi ¼
Z 1

�1
½Pf ðxiÞ � PoðxiÞ�2dx;

where Pf(xi) is the cumulative density function of the projected
change in quantity xi and Po(xi) is the corresponding distribution for
the pseudo-observation, denoted by the Heaviside function:

PoðxiÞ ¼
1 ifx ≥ 0

0 ifx < 0

�

TheCRPS,whichhas the sameunits as the variable inquestion (i.e.x),
is calculated by averaging over all pseudo-observations:

CRPS ¼ 1
N

X

N

i¼1

CRPSi:

• Continuous ranked probability skill score (CRPSS): In addition to
CRPS, we also examine a related skill score, CRPSS, which we define
here as a measure of the relative skill of the constrained probabilistic
projections with respect to the unconstrained probabilistic projections.
The CRPSS is calculated as follows:

CRPSS ¼ 1� CRPSconst
CRPSunconst

:

When the constrained projections are more accurate than the
unconstrained projections, the (unit-less) CRPSS is positive, whereas
when the constrained projection is less accurate than the uncon-
strained projections, the CRPSS is negative. The CRPSS is a useful
measure for comparing relative improvements across the methods.
However, CRPSS is sensitive to the level of accuracy of the uncon-
strained projections (i.e. CRPSunconst) such that less accurate
unconstrained projections tend to be associated with higher CRPSS
(Supplementary Fig. 9).

Confidence intervals
The 95% confidence intervals shown on the verification plots were calcu-
lated using a randomMonte Carlo bootstrap resampling of the projection-
verification pairs, with replacement, to match the number used to calculate
the actual verification metric (i.e. n = 125 for Figs. 3, 4). This random
resampling was repeated 1000 times to generate the 95% confidence
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intervals shown on the verification plots. Estimates of p values of the dif-
ferences between all pairs of points for each of the verification verification
metrics are not shown for practical reasons; however, approximate p values
of the differences can be inferred by eye based on the level of overlap of the
individual arms of the confidence intervals (e.g. refs. 69,70). Where the
proportion of overlap (measured in terms of the average length of the
different confidence interval arms) is equal to 1 indicatesp ≈ 0.2 andequal to
1/2 indicates p ≈ 0.05. Confidence intervals with zero overlap but just
touching have p ≈ 0.0171.

Data availability
Themodel datasets used in this simulation aremostly available online from
the CMIP5 and CMIP6 archives. The anonymised pseudo-observational
datasets have been uploaded to the Zenodo archive25. The constrained
projections made by each of the methods have also been uploaded to the
Zenodo archive72.

Code availability
The codes and methodologies underlying the constraints applied and
analysed in this paper have been documented in previous manuscripts (see
Methods for specific references).
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