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Rarest rainfall events will see the greatest relative
increase in magnitude under future climate change
Gaby Joanne Gründemann 1,2✉, Nick van de Giesen 1, Lukas Brunner 3,4 & Ruud van der Ent 1

Future rainfall extremes are projected to increase with global warming according to theory

and climate models, but common (annual) and rare (decennial or centennial) extremes could

be affected differently. Here, using 25 models from the Coupled Model Intercomparison

Project Phase 6 driven by a range of plausible scenarios of future greenhouse gas emissions,

we show that the rarer the event, the more likely it is to increase in a future climate. By the

end of this century, daily land rainfall extremes could increase in magnitude between 10.5%

and 28.2% for annual events, and between 13.5% and 38.3% for centennial events, for low

and high emission scenarios respectively. The results are consistent across models though

with regional variation, but the underlying mechanisms remain to be determined.
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G lobal warming will result in an intensification of the water
cycle1. An increase in rainfall extremes is already observed
in many regions in the world2–6, and research shows that

extremes will increase in the future depending on the emission
scenario7–11. Global climate models (GCMs) are the only avail-
able tools to study future daily rainfall extremes on the global
domain, but come with limitations. A large limitation is that
GCMs do not resolve convective processes, which are important
drivers of extreme precipitation12,13. Recent research demon-
strates that GCMs included in the Coupled Model Inter-
comparison Project Phase 6 (CMIP6)14 have decent skill in
modelling extreme rainfall in comparison to observations15. Yet,
when interested in absolute magnitudes or specific locations, a
careful selection of models based on observations or advanced
bias correction approaches are necessary16–18, but these are less
relevant when studying relative changes over time.

Studies investigating the simulation of rainfall extremes in
global climate models typically focus on one of two types of
extremes: (1) common and (2) rare. Climate indices focusing on
“common” extremes typically have probabilistic return times of a
year or less. Examples of such indices include annual maxima5,19,
a percentile-based threshold, e.g. the 90th, 95th, 99th, or 99.9th
percentile20–22, or indices like R20mm (the number of days per
year in which precipitation depth exceeds 20 mm) as defined by
“the expert team on climate change detection and indices”8,23,24.
These indices are well-studied on global and regional domains,
and many regions expect a substantial increase in such common
extremes9,19,20,22,23,25. The second type of extremes are the “rare”
ones with multi-year or multi-decade return time periods, which
are important for infrastructure design10. In hydrology these
are typically estimated based on extreme value theory (using a
historical time series of the same location), but model-based
(e.g.26,27) or spatial pooling-based approaches (e.g.28,29) also exist
to increase the time series length. There are fewer studies on the
effect of global warming on such rare extremes30–32, or on the
differences in future changes between “common” to “rare”
extremes15,27. The latter studies point to a possible larger relative
increase of the rare extremes.

The scientific debate regarding the effect of global warming on
rainfall extremes has not yet fully addressed this difference in the
expected change for the common and rare extremes, and if that
differs for different climatic regions across the world. Here, we
investigate the spatiotemporal patterns of a range of common to
rare extremes using a large ensemble of precipitation estimates
from the GCMs included in CMIP614.

We analyse the simulations of daily precipitation of 25 CMIP6
GCMs for both the historical late twentieth century period
(1971–2000, referred to as “historical”) and the future late twenty-
first century period (2071–2100, referred to as “future”) forced by
four different scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-
8.5)33. To achieve robust multi-model ensemble statistics it is
important to account for (a) model independence, i.e. the fact
that some GCMs originate from similar development branches or
share components and (b) model performance, i.e. the models’
ability to simulate historical climate34. Here we use the Climate
model Weighting by Independence and Performance
method35–39 to weight models by both independence and per-
formance (see “Methods” for details). The multi-model ensemble
means shown in this manuscript are weighted using the described
method, but we note that using unweighted estimates does not
considerably affect the results and conclusions drawn in this
study (see Supplementary Figs. S1–S3).

Extreme precipitation return levels ranging from common to
rare were estimated using frequency and extreme value analyses
(see “Methods”). We found the results to be largely independent
of the statistical method, but here we mainly show the results

obtained by using the metastatistical extreme value (MEV)
distribution40,41 as it produces the smoothest spatial patterns42,43

and reduces uncertainty for the rarest extremes40.
This study is focused on relative changes in precipitation

extremes in order to overcome the issues of systematic bias and
different climate model resolutions. Moreover, relative changes
allow for comparison between geographical regions with highly
different precipitation amounts. As a reference for absolute
values, we show the weighted mean precipitation depth for a
precipitation event that would occur on average once every 100
years in Fig. 1 (see Supplementary Figs. S4 and S5 for the indi-
vidual models). The highest model agreement is shown over the
higher latitudes and arid regions, the lowest over the tropics,
which most models have issues simulating correctly10,23,44 (see
Supplementary Fig. S6).

Results
Future precipitation extremes for the climate scenarios are
expected to increase in magnitude over land compared to his-
torical extremes (Fig. 2 and Supplementary Figs. S7–9). This
increase has high model agreement, irrespective of the climate
scenario or how rare the extremes are. Regions with the largest
magnitude increase in future extremes are mainly located in areas
around and just north of the equator, stretching from the
Equatorial Pacific Ocean, via northwest South America, through
the Sahara and Western, Central and Eastern Africa, the Arabian-
Peninsula and Arabian Sea to South Asia and the Tibetan Plateau.
There are some locations over the subtropical Atlantic and South
Pacific oceans where extreme precipitation is expected to decrease
in the future, though more so for the common return levels. This
is in agreement with findings by Pfahl et al.45, who demonstrated
that the dynamic contribution of daily precipitation over

Fig. 1 The 100-year return level of daily precipitation. The 100-year return
level of daily precipitation weighted mean across 25 CMIP6 models for
a historical (1971–2000) and b SSP5-8.5 future (2071–2100) periods. The
individual model results are shown in Supplementary Figs. S4 and S5. Dry
areas (weighted mean of less than 3 events per year) are masked in grey.
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subtropical oceans causes robust regional decreases in extreme
precipitation. These regional patterns of increasing and decreas-
ing precipitation extremes are similar to those of Li et al.15, their
Fig. 5. Furthermore, the areas with the highest increases and
lowest decreases overlap with the areas with the most positive and
negative scaling with dew point temperature46, their Fig. 4.

The rarest precipitation extremes (i.e. the blue squares in
Fig. 3) will increase more relative to the more common ones (i.e.
the green triangles in Fig. 3). As expected, all individual models
predict a global median magnitude increase in extreme pre-
cipitation for each of the four SSPs. However, the finding that this
increase is relatively larger for rarer extremes is to the best of our

knowledge the novel part of the results. Technically, this implies
that the tails of extreme value distributions42 become heavier in a
future climate. This behaviour is consistent at the global domain
across all 25 CMIP6 models analysed (Fig. 3) and statistically
significant for all SSP scenarios (Supplementary Table S1), as well
as for other statistical methods (Supplementary Figs. S10 and S11)
and other GCM realisations (Supplementary Figs. S12–S22).
Furthermore, these findings are statistically significant for most
individual GCMs, particularly for the high emission scenarios (21
out of 25 GCMs for SSP3-7.0 and SSP5-8.5, Supplementary
Table S2) and more so for the GCMs with the highest resolutions
(Table 1).

Our main result that the magnitude of rarer extremes are
expected to increase relatively more is also backed by earlier
observation based studies over Australia47 and over Europe and
the USA22. As well as based on a single model initial-condition
large ensemble study over Western Europe27, and on CMIP6
global climate models15. The relative magnitude increase is also
stronger with higher emission scenarios (see also Table 2),
underlying the importance of emission reduction for extreme
precipitation hazards.

Figure 4 and Table 2 show where the magnitude of most rare
extremes increases relatively more than the common ones, as the
difference in relative changes in the 100-year and 1-year return
level estimates (see Eq. (4) in “Methods”). Land regions with the
largest relative magnitude increase of rare extremes with respect
to the common ones are around the subtropics (Sahara and
surroundings, Amazon and Central America, and Central and
Northern Australia), and oceanic regions include the South
Pacific, South Atlantic, South Indic, and to a lesser extent their
Northern counterparts. A few regions are exceptions where the
common extremes instead are expected to increase relatively
more than the rare ones, which are around the Equatorial Pacific
Ocean and the poles. For future low-emission SSP scenarios, the
models show large spatial discrepancies, contrary to high model
agreement for the highest emission scenarios, predominantly over
the subtropics. At the high latitudes and tropics, however, the
models show more disagreement, which can be explained by
more model uncertainty of extreme precipitation over the tropics
in general due to the GCM differences23.

Discussion
We showed that in the future rare daily precipitation extremes are
expected to increase more than common extremes. The CMIP6
GCMs exhibit high model agreement for this finding in general,
particularly for the highest emission scenario (Fig. 4), but some
spatial differences exist. The higher the emission scenario, the
higher the relative difference found between rare (100-year return
level) and common extremes (1-year return level), and with
higher statistical significance (Table S1). Particularly we found for
low emission scenario SSP1-2.6 and high emission scenario SSP5-
8.5 global (land and ocean) daily rainfall extremes will increase by
8.6% and 23.1%, respectively, for 1-year events (Table S3) and by
11.9% and 32.5% for for 100-year (Table S4) events by the end of
this century. Furthermore, regions are not affected equally, Africa
and regions around and just north of the equator particularly will
face a disproportionate increase in rare extreme precipitation
hazards. This is notably the case for the higher emission sce-
narios, and much more than the regions most responsible for
greenhouse gas emissions that often are expected to have a
smaller increase than the global mean (Fig. 2). There are also
areas in the subtropical Atlantic and South Pacific oceans that
show decreasing precipitation extremes in the future. It should be
noted that while the larger patterns of rarer extremes increasing
relatively more is quite robust, there are also some regions with

Fig. 2 Relative change of future vs historical precipitation return levels.
Relative change of the a 1, b 10 and c 100-year return levels of daily
precipitation expressed as weighted mean across 25 CMIP6 models for the
SSP5-8.5 future period (2071-2100) with respect to the historical period
(1971–2000) (Eq. (2)). Hatching is in the locations where >75% of the
weighted models agree on the sign of the change. Dry areas (weighted
mean of less than 3 events per year) are masked in grey.
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model disagreement. For such regions particularly, when com-
piling future extreme rainfall-intensity-frequency curves a more
careful selection and weighting of climate models based on
regional observations and advanced bias-correction techniques is
advisable.

Here we did not formulate a hypothesis of why we observe this
behaviour of rare extremes increasing relative more than com-
mon extremes under climate change. Yet, when looking at the
changes in the parameters underlying the MEV-Weibull dis-
tribution (Eq. (4)), the statistics themselves give some indication
about the processes (Supplementary Figs. S23–S25). It should be
noted that the behaviour could be caused by either a decrease in
the number of wet days N (combined with an increase in the scale
parameter C)48 or a decrease in the shape parameter W, which
may, for example, be the result of dynamical feedback processes
related to latent heating49. It appears that both the rainfall fre-
quency (Supplementary Fig. S23) and dynamical feedback pro-
cesses (Supplementary Fig. S25) play a role. This may serve as a
starting point for future research to further disentangle the pro-
cesses behind this behaviour. Regardless of the underlying
mechanisms, the results of this study have important implications
for the design of engineering standards as they are built on the
basis of our knowledge of the frequency of precipitation events. If
rare extreme precipitation events become more frequent in the

future as suggested here, engineering design standards, such as
those used for storm water drainage and other critical water
system infrastructure, will need to be updated. Yet, it should be
noted that bias correction methods ought to take into account the
fact that the rarest quantiles of today’s climate are made up of
different processes than the rarest quantiles in a future climate.
Whereas the challenge of accurately predicting future changes in
precipitation has been noted as one of the ’real holes in climate
science’50, we think that the fact that the model agreement is so
high should give confidence in the robustness of our climate
models, and our own findings in particular, making that hole just
a little bit smaller.

Methods
CMIP6 model data. Daily precipitation simulations from the Coupled Model
Intercomparison Project Phase 6 (CMIP6) archive are analysed for the historical
and future scenarios. The future late twenty-first century scenarios are Shared
Socioeconomic Pathways (SSPs) coupled with the previous Representative Con-
centration Pathways (RCPs)33. We included in our analyses SSP1-2.6, SSP2-4.5,
SSP3-7.0 and SSP5-8.5, ranging from the least to the most emissions. The two time
periods that are compared are (1) the simulated historical late twentieth century
period 1971–2000, and (2) the late twenty-first century period 2071–2100 (or
2070–2099 or 2069–2098, depending on the available climate-model output and
ensuring that the latest 30 years leading up to 2100 are used). We use all 25 GCMs
that provide complete simulations for the two time periods and all analysed
scenarios51. For the main analysis we used only one realisation per GCM, but we

Fig. 3 Global relative change of precipitation extremes for each individual climate model. Relative change of daily precipitation extremes simulated using
25 CMIP6 GCMs for the future period (2071-2100) SSP scenario a 1-2.6, b 2-4.5, c 3-7.0 and d 5-8.5, with respect to the historical period (1971–2000),
Eq. 2. Triangle, circle and square markers respectively represent the global area-weighted median values of the 1, 10 and 100-year return levels. The shaded
areas are the area-weighted 25th to 75th percentile intervals. The dashed lines between markers are added for visibility.
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also analysed all the different realisations with complete simulations for all five
scenarios (one historical and four SSP scenarios, see Supplementary Figs. S12–S22).
We arbitrarily selected the first available realisation of each GCM, however, the
similarity between different realisations (Supplementary Figs. S12–S22) led us to
believe that this did not affect our main findings. An overview of the models is
displayed in Table 1. As there are large differences in the resolution of the different
GCMs, the analyses are performed on each model’s native grid. The results are then
remapped to a 0.25° × 0.25° grid using the nearest neighbour interpolation method
for the ensemble means. The results remain mostly unaffected by the remapping, as
the 0.25° × 0.25° grid is a higher resolution than the native grid of each of the
models. Specifically, the remapped grid-cells are 4 to 63 times smaller depending
on the model resolution, and as we used nearest neighbour interpolation no spatial
averaging is taking place. Moreover, as the main results of this study are relative
values instead of absolute values, the different resolutions of the models do not
influence these results.

Model weighting. To account for GCM performance as well as model inter-
dependencies in the used multi-model ensemble, we apply the Climate model
Weighting by Independence and Performance (ClimWIP) method35–37,52. Clim-
WIP assigns a weight wi to each model to account for the models’ performance in
simulating historical climate (Di) and independence from the other models
(j= 1...M) in the ensemble (Sij):

wi ¼
e
� Di

σD

� �2

1þ∑M
j≠i e

� Sij
σS

� �2 ; ð1Þ

with the shape parameters σD and σS determining the strength of the performance
and independence weighting, respectively (see ref. 35 for more details). We use an
implementation of ClimWIP within the Earth System Model Evaluation Tool
(ESMValTool)53 version 2.354.

The independence weighting is based on model–model distances in 1979–2014
climatologies of temperature and sea level pressure in the same setup as used by
Brunner et al.35 but updated for the 25 GCMs used in this study. These metrics
have been shown to cluster models by known development families and account
for dependencies35,52.

For model performance, we adapted the metrics used in ref. 35 to the target of
global precipitation change. In contrast to other important climate variables, most
prominently future warming35,55–57, emergent constraints58 for global
precipitation changes have only recently been suggested59,60. Here, our main aim
was to reduce the influence of models which simulate variables considered
important for the representation of precipitation very different from observations
rather than applying a constraint that necessarily reduces model spread.
Performance weights were, therefore, based on five metrics: (1) the temperature
trend, which has been found to be an important constraint for temperature and

precipitation changes alike55,59, (2) the temperature climatology, (3) the variability
of temperature, (4) the precipitation climatology and (5) the variability of
precipitation, all in the period 1979–2014. Models which perform poorly in one or
more of these metrics received less weight in the calculation of multi-model
statistics as we trust their projections of future precipitation less. The strength of
the weighting was established using a leave-one-out model-as-truth test35,37,61 on
the target of global mean precipitation change. The resulting weights for each
model are included in Table 1 and have a range comparable to recent studies, such
as Brunner et al.35 (their Table S2 in the supplement). The weights of the models
were used to create the multi-model weighted ensemble means for Figs. 1, 2, 4, and
Supplementary Figs. S3, S7–S9, and S23–S25.

Changes in precipitation estimates. To study if the relative change in common
extremes is different from the relative change in rare extremes, we use the following
two equations:

Crel;t;x ¼
TtSSPx � Tthistorical

Tthistorical
ð2Þ

D100�1;x ¼ Crel;100;x � Crel;1;x ¼
T100SSPx � T100historical

T100historical
� T1SSPx � T1historical

T1historical
ð3Þ

With Eq. (2) we estimate (Crel,t,x), which is the relative change between
historical and future precipitation for each of the return levels (Tt) and for any SSP
scenario (SSPx). We use Eq. (2) as input for Eq. (3), where D100-1,x stands for the
difference in change of rare and common extremes, T100 stands for the 100-year
return level and T1 for the 1-year return level. For the all-day percentile method
the same formula applies, but T100 and T1 were substituted by T30 and T0.3.

Extreme precipitation estimates. In this study, we estimated the common and
rare extreme precipitation at each model grid-cell using three different methods:
(1) the Metastatistical Extreme Value (MEV) distribution, (2) the Generalised
Extreme Value (GEV) distribution, and (3) quantiles directly obtained from the
precipitation simulations of all models. By using different methods for the calcu-
lation of precipitation extremes, we show the robustness of our results and allow
for comparison with other studies.

The rare precipitation extremes (with return levels of 10 and 100 years) we
present in this paper are calculated using the first method: the MEV distribution41.
As opposed to traditional extreme value distributions, MEV uses all available data,
and is, therefore, able to estimate return periods higher than the period of record
with reduced uncertainty if the tail of the true distribution matches.40,62–64, and
shows more consistent geographical patterns than traditional methods as
GEV42,43,62. Following the approach of Zorzetto et al.40, for each individual year
the Weibull distribution is fitted to all days with a precipitation depth exceeding 1

Table 1 Overview of the CMIP6 GCMs and the weights for each GCM included in this study.

Model No. of cells (Lat × Lon) No. of realisations Institution, country Weight

ACCESS-CM2 144 × 192 3 CSIRO-ARCCSS, Australia 0.0711098
BCC-CSM2-MR 160 × 320 1 BCC, China 0.0375146
CAMS-CSM1-0 160 × 320 1 CAMS, China 0.0205778
CanESM5 64 × 128 50 CCCMA-ECCC, Canada 0.0161621
CESM2 192 × 288 2 NCAR, USA 0.0736632
CESM2-WACCM 192 × 288 1 NCAR, USA 0.0346487
CMCC-CM2-SR5 192 × 288 1 CMCC, Italy 0.0414861
CNRM-CM6-1 128 × 256 1 CNRM-CERFACS, France 0.0350501
CNRM-ESM2-1 128 × 256 1 CNRM-CERFACS, France 0.0547842
EC-Earth3 256 × 512 7 EC-Earth consortium 0.0016417
EC-Earth3-Veg 256 × 512 4 EC-Earth consortium 0.0834485
FGOALS-g3 80 × 180 3 LASG-IAP-CAS, China 0.0091949
GFDL-ESM4 180 × 288 1 GFDL-NOAA, USA 0.1476730
IITM-ESM 94 × 192 1 CCCR-IITM, India 0.0372205
INM-CM4-8 120 × 180 1 INM-RAS, Russia 0.0141569
INM-CM5-0 120 × 180 1 INM-RAS, Russia 0.0323639
IPSL-CM6A-LR 143 × 144 6 IPSL, France 0.0362602
KACE-1-0-G 144 × 192 3 NIMS/KMA, Republic of Korea 0.0497750
MIROC6 128 × 256 3 CCSR-UT-JAMSTEC-NIES, Japan 0.0668575
MIROC-ES2L 64 × 128 1 CCSR-UT-JAMSTEC-NIES, Japan 0.0093852
MPI-ESM1-2-HR 192 × 384 1 MPI, Germany 0.0504672
MRI-ESM2-0 160 × 320 2 MRI, Japan 0.0302788
NorESM2-LM 96 × 144 1 NCC, Norway 0.0199261
NorESM2-MM 192 × 288 1 NCC, Norway 0.0201326
UKESM1-0-LL 144 × 192 5 MO-NERC, UK 0.0062219
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mm. Years are grouped together if the number of events per year is lower than
twenty, to allow for more accurate parameter estimation65. The Weibull parameters
are fitted using probability-weighted moments66. The cumulative distribution
function of MEV-Weibull is as follows:

ζmðxÞ ¼
1
M

∑
M

j¼1
1� exp � x

Cj

 !wj
" #( )nj

ð4Þ

where j is the year (j= 1, 2,…,M), Cj > 0 is the Weibull scale parameter, wj > 0 is
the Weibull shape parameter, and nj is the number of wet events in hydrological
year j41.

The second method to calculate the rare extremes is using the traditional GEV
distribution. Annual maxima are used to estimate the GEV parameters with the
L-moments approach67. The cumulative distribution function of GEV is:

GðzÞ ¼ exp � 1þ ξ z�μ
σ

� �� ��1
ξ

n o
; ξ≠0

exp � exp � z�μ
σ

� �� �� 	
; ξ ¼ 0

8<
: ð5Þ

with location parameter μ ϵ (−∞, ∞), scale parameter σ > 0, and shape parameter
ξ ϵ (−∞, ∞). The results for GEV are included in Supplementary Fig. S10.

The third method is to obtain the precipitation extremes directly from the
precipitation estimation of each model, using all-day percentiles. The common
extremes we present in this paper, the ones with a return level of 1 year (99.7262th
percentile), are directly estimated from the precipitation time series for each grid-
cell. This is because extreme value distributions are designed for return levels
greater than the length of the time series. We also estimated the precipitation
depths for all-day percentiles corresponding to the 0.3-year (approximately once
every 109 days), 3-year, and 30-year (highest value in the 30-year time-series)
return levels: the 99.0874th, 99.9087th, and 99.9909th percentile respectively. For
the 30-year return level it is particularly uncertain whether the maximum observed
precipitation event actually represents an event with a 30-year return period, which
is why we did not use this as a primary method. Yet, averaged over large regions or
globally this approach can still be considered valid. The results for this method are
included in Supplementary Fig. S11.

Statistical analysis. To determine whether the results found that rarest extremes
will increase more than the common ones (D100−1,x > 0, Eq. (3)) are statistically
significant, we followed Livezey and Chen68. To account for spatial correlation, we
first calculated the number of spherical harmonics that explain 95% of the observed
variation in change in T1 (Crel,1,x, Eq. (2)) and change in T100 (Crel,100,x, Eq. (2))
for each of the 25 GCMs and SSP scenarios. The degrees of freedom in these data
were set to be equal to this number of harmonics. Note that the lower the per-
centage used, the more conservative the test will be, with 95% being conservative.
We then drew a number, equal to the degrees of freedom, of random samples from
the change in T1 and T100 estimates for each GCM and SSP scenario, and cal-
culated the median of these samples. The drawing excluded masked pixels
(weighted mean of less than 3 events per year, see Section Mask dry areas) and was
weighted according to the area of the pixels. This analysis was done as a monte
carlo (mc) simulation and repeated 10,000 times to determine the Cumulative
Distribution Function of the median of samples of size degrees of freedom of
randomly chosen pixels. Finally, the values that exceeded 5%, 2%, and 1% of the
medians of the samples, were taken as the 95%, 98%, and 99% confidence levels
with which the null-hypothesis that there was no increase could be rejected.

We also applied the Spearman’s rank correlation to analyse whether the median
change in the monte carlo 100-year return level (mc-Crel,100,x, Eq. (2)) is
significantly larger than the median change in the monte carlo 1-year return level
(mc-Crel,1,x). We assumed that each GCM is an independent experiment resulting
in an estimate for mc-Crel,100,x and mc-Crel,1,x. The null-hypothesis is that there is
no statistical relationship between the change and being a member of either the
mc-Crel,100,x or the mc-Crel,1,x family (i.e., mc-Crel,100,x=mc-Crel,1,x). We tested

Table 2 Regional difference in weighted mean change for the
100- (Supplementary Table S4) and 1-year return levels
(Supplementary Table S3) between the historical
(1971–2000) and four future SSP scenarios (2071–2100).

Abbreviation Region SSP1-
2.6

SSP2-
4.5

SSP3-
7.0

SSP5-
8.5

SAH Sahara 10.69 18.81 24.93 34.45
WAF Western-Africa 3.62 8.29 19.30 25.71
CAU C.Australia 12.27 11.94 18.54 23.56
SCA S.Central-America 4.28 7.17 12.92 22.29
CAF Central-Africa 3.51 6.69 15.35 21.44
NSA N.South-America 4.60 9.75 15.78 21.09
NAU N.Australia 8.69 12.20 15.43 19.65
SPO S.Pacific-Ocean 7.72 12.85 16.14 19.52
NCA N.Central-America 7.25 10.62 16.15 19.31
MDG Madagascar 6.39 8.21 13.72 19.06
NES N.E.South-America 4.35 7.03 13.37 19.00
SAO S.Atlantic-Ocean 8.04 11.00 13.55 18.58
SAM South-American-

Monsoon
4.98 9.03 14.27 18.56

WSAF W.Southern-Africa 8.13 11.05 13.78 18.55
MED Mediterranean 6.27 9.34 15.13 17.96
SAS S.Asia 3.07 5.10 12.04 17.84
ESAF E.Southern-Africa 7.23 9.16 14.23 17.70
SAU S.Australia 4.89 8.94 13.85 17.32
SWS S.W.South-

America
6.64 10.07 12.51 16.51

SIO S.Indic-Ocean 5.44 8.67 12.53 15.33
EAU E.Australia 3.99 6.63 11.78 13.90
NWS N.W.South-

America
3.45 8.12 9.73 13.43

NAO N.Atlantic-Ocean 5.33 7.74 10.52 12.69
NZ New-Zealand 3.70 5.82 10.11 11.73
SSA S.South-America 2.51 6.10 8.05 11.39
- Global (land) 3.06 4.96 8.25 10.65
SES S.E.South-America 3.21 5.37 7.87 10.48
SEA S.E.Asia 1.95 3.47 7.94 10.40
WCA W.C.Asia 2.96 5.44 8.29 9.87
NEAF N.Eastern-Africa 4.23 7.98 10.86 9.81
CAR Caribbean 2.24 4.84 8.64 9.74
– Global (all) 3.31 5.18 7.54 9.61
EAS E.Asia 1.14 3.10 6.36 8.62
NPO N.Pacific-Ocean 3.10 4.63 7.01 8.56
BOB Bay-of-Bengal 2.09 1.46 4.45 8.12
WCE West&Central-

Europe
2.55 3.86 5.78 8.06

SEAF S.Eastern-Africa 1.97 2.60 6.34 7.50
CNA C.North-America 1.70 3.26 4.69 6.82
ARP Arabian-Peninsula 6.40 9.00 11.48 6.76
SOO Southern-Ocean 1.55 2.74 4.64 6.26
ENA E.North-America 1.59 3.04 4.85 6.22
TIB Tibetan-Plateau 0.95 1.17 3.64 5.99
WNA W.North-America 2.28 2.81 4.57 5.57
EIO Equatorial.Indic-

Ocean
1.24 1.51 2.71 5.47

EEU E.Europe 1.74 2.35 3.66 5.28
NEU N.Europe 1.28 2.20 2.59 4.05
EAO Equatorial.Atlantic-

Ocean
0.21 0.64 3.70 3.29

RFE Russian-Far-East 0.66 1.01 2.45 3.14
EAN E.Antarctica 1.08 2.43 2.27 2.63
ECA E.C.Asia 0.72 0.12 0.14 2.24
WSB W.Siberia 0.11 −0.16 0.50 1.67
GIC Greenland/Iceland 0.71 0.39 1.19 1.32
WAN W.Antarctica 0.33 0.62 0.96 1.32
NWN N.W.North-

America
0.10 −0.08 0.64 1.04

Table 2 (continued)

Abbreviation Region SSP1-
2.6

SSP2-
4.5

SSP3-
7.0

SSP5-
8.5

ESB E.Siberia 0.05 0.04 0.43 0.97
NEN N.E.North-America 0.26 0.56 0.91 0.79
ARS Arabian-Sea 2.12 −1.14 −3.46 −5.45
RAR Russian-Arctic −2.08 −3.45 −4.75 −6.04
ARO Arctic-Ocean −2.96 −4.17 −5.70 −6.74
EPO Equatorial.Pacific-

Ocean
-2.19 −4.33 −8.78 −11.11

The regions in the table are the IPCCWGI reference regions (version 4)69, as well as global land
cells and all global cells (italic). Values are ordered in descending order for SSP5-8.5. A positive
change indicates that the 100-year return levels will increase relatively more than the 1-year
return level.
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whether the changes in 100-year return levels are significantly larger than the
changes in 1-year return levels at 99%, 99.9%, and 99.99% significance levels.

Mask dry areas. Estimating the difference between common and rare extremes for
highly arid places, such as the Sahara, makes little sense as precipitation occurs so
seldom. Therefore, we created a mask to remove very dry areas from our study, based
on the mean number of dry events per year combined with the performance-based
weights for each model.We calculated themean number of events per year for each of
the 25 models, each individual pixel, and for the one historical and four future
scenarios. We used this information to create a mask per model and scenario, with a 1
if the number of events is equal to or exceeds three events per year, and a 0 if there are
less than three events per year. These individual masks are then remapped to a
0.25° × 0.25° grid using the nearest neighbour interpolation method. The masks for
the individual models and scenarios, consisting of 0 and 1 values, are multiplied by
the performance-based weights for each model. After which, the sum of the 25
weighted masks for each pixel and each individual scenario is taken. If the sum of the
25 weighted masks es equal to or greater than 0.75 at the pixel level, that pixel will get
the value of 1. If the sum of the weighted masks are smaller than 0.75, that pixel will
get the value of 0. This results in five masks with values of 0 and 1: one for the
historical scenario and four for the SSP scenarios. The final mask is created by
multiplying all five masks, to ensure that there are on average 3 events per year for all
individual scenarios. The areas where there are not enough events per year are
marked as grey on the maps, and these pixels are not considered for any analyses.

Regional analysis. We conducted the regional analysis based on the Inter-
governmental Panel on Climate Change Working Group I (IPCC WGI) reference
regions, version 469. Supplementary Fig. S26 shows an overview of the geographical
locations of these reference regions, whereas the region name corresponding to the
abbreviations are included in Table 2. The IPCC WGI reference regions were
chosen in order to allow for consistency with other scientific research. These IPCC
WGI regions were used to calculate the weighted multi-model ensemble regional
means, for Table 1, and Supplementary Tables S3 and S4. Furthermore, weights
were applied to reflect the cell sizes, so that cells with larger land masses (around
the equator) get higher weights than the cells with small land masses (higher
latitudes around the poles).

Data availability
The data for producing the graphs and charts in this manuscript are publicly available in
the 4TU repository70: https://doi.org/10.4121/20531376. The CMIP6 data that support

the findings of this study are openly available from the Earth System Grid Federation
(ESGF) archive51: https://esgf-data.dkrz.de/search/cmip6-dkrz/. See CMIP6 Data
References at page 26 in the Supplementary Information for the references of each
individual model and scenario that were analysed in this study.

Code availability
The codes to create the graphs and charts in this manuscript are publicly available in the
4TU repository70: https://doi.org/10.4121/20531376. We used the mevpy Python package
(https://github.com/EnricoZorzetto/mevpy) for the extreme value analysis, and regmask
Python package for the regional analysis. For the spherical harmonics calculations, we
used pyshtools (https://shtools.github.io/SHTOOLS/real-spherical-harmonics.html). To
analyse the data and create the graphs and charts, we also used the following python
packages: cartopy, matplotlib, netCDF4, numpy, pandas, string, and xarray. For the
model weighting we used an implementation of ClimWIP within the Earth System
Model Evaluation Tool (ESMValTool)53 version 2.354 (https://docs.esmvaltool.org/en/
latest/recipes/recipe_climwip.html). In order to remap the data to a common grid, we
used the Climate Data Operator (CDO) “remapnn” by the Max-Planck Institute.
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