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Abstract
Weather and climate extremes are rare manifestations of climate variability that can severely
impact society and the environment. To investigate their properties and changes on a global scale,
observational records are often complemented by climate models such as those from the latest
Coupled Model Intercomparison Project (CMIP6). However, typical CMIP6 models have a grid
spacing of about 100 km and, therefore, do not allow the representation of extremes at local scales
important for impacts. Here, we provide a global view on the information lost at such resolutions,
focusing on temperature and precipitation extremes. We draw on two next-generation, km-scale
global climate models, run with a grid spacing of about 10 km, and regrid them to a range of
coarser resolutions. From the regridded data, we then investigate the spatial sub-grid variability
hidden at the CMIP6-like 100 km grid spacing to quantify the effect resolution has on the
representation of extremes globally. We find clear patterns of such a resolution effect on a diverse
set of temperature extremes, particularly in mountainous areas, at coastlines, and along large
rivers. For the example of annual maximum temperature, the difference between the 10 km and
100 km grid spacings can exceed 10 ◦C. For precipitation, globally aggregated low and high
extremes are shown to be underestimated at coarse resolution, with the strongest spatial signals
emerging in regions with complex topography and in the tropics. Our results quantify existing
knowledge and demonstrate the importance of spatial resolution for the representation of climate
extremes, in particular for hotspot regions such as coastlines, which often coincide with densely
populated areas. The advent of ever higher resolved global models, hence, allows improved
estimates of local climate impacts and related risk assessments with global coverage.

1. Introduction

Climate extremes can develop on a wide range of
spatial scales from continental to local. To cover
these scales and investigate extreme event proper-
ties and their changes in different regions, global cli-
mate models (GCMs) are often used. However, estab-
lished GCMs, such as those from the latest Coupled
Model Intercomparison Project (CMIP6; Eyring et al

(2016)) have a grid spacing of 100–200 km, limit-
ing their applicability for the investigation of local
extreme properties and impacts (e.g. Wehner et al
2010, Kopparla et al 2013, Torma et al 2015, Iles
et al 2020, John et al 2024). Here, we use two new
GCMs with a previously unprecedented resolution
of about 10 km to provide a global quantification of
what spatial information about climate extremes is
lost at coarser, CMIP6-like resolutions.
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For individual domains, regional climate mod-
els (RCMs) are already able to resolve local details.
Some even explicitly resolve convection (in so-called
convection-permitting RCMs; CPRCMs) which has
been shown to lead to a better representation of
extremes (Coppola et al 2020, 2021, Poschlod and
Koh 2024, Soares et al 2024). However, they do not
provide global coverage and show conceptual defi-
ciencies, such as the potential inadequacy of the lat-
eral boundary conditions and the lack of two-way
interactions with the driving GCM. Further, their
production often lags many years behind due to
the additional processing steps needed (Davies 2014,
Giorgi 2019, Sobolowski et al 2025).

Recently emerged GCMs, able to simulate the cli-
mate system with a grid spacing of about 10 km or
even less (km-scale models), combine global cover-
age with the resolution of local details for the first
time and aim to build towards digital twins of Earth
to support adaptation decisions at a community level
(Bauer et al 2021, Hohenegger et al 2023, Hazeleger
et al 2024, Stevens et al 2024, Rackow et al 2025). First
studies have already confirmed the potential of this
new generation of models to better represent import-
ant climate variables and processes such as temper-
ature, precipitation, and land-atmosphere feedbacks
compared to observations (Kuma et al 2024, Lee and
Hohenegger 2024, Li et al 2024, Spät et al 2024, Wille
et al 2024).

Here, we take a complementary approach and
investigate the added value of km-scale models for
the spatial representation of various climate extremes
purely within a given model and without reference to
observations. We take advantage of the first 30 year
integrations from the ICOsahedral Non-hydrostatic
(ICON) and the Integrated Forecasting System (IFS)
models. Their output is available on a 13 km equal-
area grid, that we use to produce a range of coarser
resolved datasets through regridding to then quantify
the spatial variability lost at these coarser scales.
This allows a globally consistent evaluation of the
resolution effect on climate extremes without the
need to consider the complex chain of observations,
CPRCMs, RCMs, and GCMs. Our method, hence,
isolates the effect of output resolution while not
allowing direct conclusions about model perform-
ance or the effect of actually running models at dif-
ferent resolutions, which are covered in other works
(e.g. Iles et al 2020, Ban et al 2021, Ha et al 2024, Lee
and Hohenegger 2024, Soares et al 2024, Poujol et al
2025).

We apply our approach to a diverse set of
temperature- and precipitation-based climate
extreme indices to address the following questions:
(1) what is the effect of resolution on the spatial and
spatio-temporal distribution of extremes globally, (2)
in which regions does output resolution matter for

the representation of extremes, and (3) how do the
results differ for different extremes represented by a
range of indices?

2. Data andmethods

2.1. Km-scale model data
We use data from two fully coupled GCMs: the ICON
model in its Sapphire configuration (Hohenegger
et al 2023) and the IFS model coupled to the Finite-
volumE Sea ice-OceanModel (FESOM2; Rackow et al
(2025)). Here, we refer to these models simply as
ICON and IFS.

Both were developed and run in the frame of the
next Generation of Earth Modeling Systems (next-
GEMS) project and we use their latest version, pro-
duced in the fourth development cycle (Segura et al
2025). ICON is runwith a grid spacing of about 10 km
on an icosahedral-triangular grid and IFS with about
9 km on a reduced Gaussian grid. For more detailed
information about the models’ setup and specific-
ation, we refer to the reference publications cited
above.

Here, we briefly raise the representation of con-
vection as a major difference between the two mod-
els. In ICON convection parametrization is turned
off entirely (Hohenegger et al 2023) while IFS still
parameterizes convection but reduces its influence
(Rackow et al 2025). The effect of convection para-
metrization on different climate variables, including
precipitation and temperature extremes, has already
been described based on analysis of limited-area
CPRCMs (Coppola et al 2020, Ban et al 2021, Ha et al
2024, Sangelantoni et al 2024, Soares et al 2024) and
will be discussed in the context of ICON-IFS differ-
ences throughout this study.

We use all 29 full years available from both
models, representing future projections from 2021
to 2049 using the high emission scenario SSP3-7.0
(Meinshausen et al 2020). ICON provides 15-minute
mean temperature and accumulated precipitation,
which we aggregate to hourly values by taking the
mean and sum, respectively. IFS provides hourly
instantaneous temperature and hourly accumulated
precipitation. The hourly values of both models are
processed to daily maximum temperature and daily
accumulated precipitation.

2.2. The HEALPix grid
Both models are output on the Hierarchical Equal
Area isoLatitude Pixelation of a sphere (HEALPix)
grid (Górski et al 2005). HEALPix is an unstructured
grid that allows representing geospatial data at differ-
ent discrete resolutions or zoom levels. Higher zoom
levels have higher resolution, with the highest avail-
able level used here being 9, corresponding to a hori-
zontal grid spacing of 12.7 km. A defining feature of
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Table 1. Summary of zoom levels used in this study and their
respective grid spacing and number of grid cells globally. The
nside parameter is also given for completeness as it is a frequently
used alternative metric for the resolution. It indicates the number
of pixels along a side of one of the 12 zoom level 0 pixels.

Zoom nside Grid spacing Grid cells

9 512 12.7 km 3’145’728
8 256 25.5 km 786’432
7 128 50.9 km 196’608
6 64 101.9 km 49’152
5 32 203.7 km 12’288
4 16 407.5 km 3’072
3 8 815.0 km 768
2 4 1’629.9 km 192
1 2 3’259.8 km 48
0 1 6’519.6 km 12

HEAlpix is that the area of all grid cells at a given zoom
level is identical everywhere on the globe.

A reduction of one zoom level corresponds to a
doubling of the grid spacing or a reduction of the
number of grid cells by a factor of four (see table 1).
Computationally, this coarsening is very simple and
only consists of averaging four neighboring grid cells.

2.3. Coarsening km-scale model output to lower
resolutions
Wedraw on the zoom level 9 data from ICON and IFS
to represent a range of other resolutions by coarsening
them to different lower zoom levels (table 1). While
this is clearly not equivalent to actually running a
model at each of the different resolutions, the crucial
advantage of this method is its simplicity: the com-
parison of resolutions is done purely within a single
model run, eliminating all other factors.

2.4. Identifying regions with information loss at
coarse resolutions
To identify regions with large information loss at a
coarse grid spacing of about 102 km (zoom level 6),
corresponding to the grid spacing of a typical CMIP6
model, we compare it to the 13 km (zoom level 9) ref-
erence resolutions. The resolution difference, hence,
corresponds to three zoom levels or a change in the
number of grid cells of 43 = 64. While this approach
uses the high-resolution model runs as a reference
to quantify the effect of resolution, it is not reli-
ant on them being completely unbiased compared to
observation-based references as the comparison of a
model to its own coarsened output provides an impli-
cit bias-correction. We point out that this assump-
tion only holds as long as the high-resolution model
is not affected by spatially rapidly changing biases
from one grid cell to the next and represents funda-
mental physics (land-sea contrasts, elevation depend-
ence of temperature, and orographic lifting to give
some examples) correctly.

We define the sub-grid variability of an extreme
index as the standard deviation across the 64 zoom
level 9 grid cells thatmake up a single grid cell at zoom
level 6. To further quantify the effect of the resolu-
tion, we define the sub-grid anomaly as the difference
between each grid cell at zoom level 9minus the zoom
level 6 grid cell within which it lies. The code to cal-
culate and plot thesemetrics can be found in Brunner
(2025b).

2.5. The ETCCDI extreme indices
To investigate the effect of resolution on climate
extremes, we draw on a subset of 6 indices from
the pool of 27 indices recommended by the Expert
Team on Climate Change Detection and Indices
(ETCCDI; Zhang et al (2011)), focusing on hot
and wet extremes. The used indices represent a
diverse selection based on block maxima, absolute
thresholds, and relative thresholds to cover different
extreme properties. The calculated ETCCDI indices
can be found in Brunner (2025a) and a database of
time-mean figures in Brunner (2025c).

For temperature we use the annual maximum of
daily maximum temperature, the annual number of
summer days (days with maximum daily temperat-
ure exceeding 25 ◦C), and the warm spell duration
index (annual sum of days with maximum daily tem-
perature exceeding the local, seasonal 90th percentile
for at least six consecutive days). For precipitation we
use the annual maximum of daily precipitation, the
annual number of heavy rain days (days with daily
precipitation exceeding 10mm), and the annualmax-
imum length of consecutive days with daily precipit-
ation exceeding 1mm. Finally, the time average over
all 29 years is taken for all indices.

We note that for the sub-grid anomaly
(section 2.4) of extreme indices the order of calcu-
lation matters: calculating an extreme index at high
resolution and then coarsening it is not the same as
calculating it from a base variable at coarse resolution.
To show the full potential of the difference in spatial
resolutions we opt for the latter approach in the main
paper: the first step is to remap the base variables
(daily maximum temperature and daily precipita-
tion) from zoom level 9 to zoom level 6. The next step
is to calculate extreme indices at both zoom levels (6
and 9), and finally the calculation of the differences as
described above. This means that the mean of all 64
anomalies within one coarse grid cell is not necessar-
ily zero. The complementary approach is discussed in
the supplement.

2.6. 10-year return level of hourly precipitation
In addition to the ETCCDI indices, which represent
relatively moderate extremes on daily time scales, we
also apply our approach to the 10-year return level of
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hourly precipitation. We sample the annual maxima
of hourly precipitation and fit the generalized extreme
value (GEV) distribution (Coles et al 2001):

GEV(x;µ,σ,ξ)

=

{
exp

{
−
[
1+ ξ

( x−µ
σ

)]−1/ξ
}

if ξ ̸= 0

exp
{
−exp

(
− x−µ

σ

)}
otherwise

(1)

The location parameter µ, the scale parameter σ, and
the shape parameter ξ govern the center, spread, and
tail behavior of the GEV distribution, respectively.
Following Papalexiou and Koutsoyiannis (2013), we
limit the shape parameter to values between 0 and
0.23, as GEV fits on small sample sizes tend to show
a high estimation variance for the shape parameter.
The assumption of a positive shape parameter indic-
ating a heavy tail agrees with Ragulina and Reitan
(2017), and Rivoire et al (2022). We assess the good-
ness of fit via the Anderson-Darling test and adjust
the critical p-value for multiple testing (Wilks 2016,
Poschlod 2021), as we conduct the test across more
than 3 million grid cells for zoom level 9 (table 1).
Less than 2.2% of all fits are rejected at the signific-
ance level of α= 0.05.

3. Results

3.1. The effect of resolution on the spatio-temporal
precipitation distribution
We start by visualizing the effect of output resolu-
tion in the new km-scale models and its implications
for the example of daily precipitation in figure 1. The
emergence of this new generation of models enables
us to view global spatial patterns of precipitation with
unprecedented local detail as shown for a selected day
from ICON in figure 1(a). In fact, not every grid cell
is represented in figure 1 due to limits in the graph-
ical resolution. Still, the view allows us to identify
several features such as fronts and extratropical cyc-
lones, high-intensity convective rainfall in the trop-
ics, and dry areas with precipitation rates of less than
0.01mmd−1.

The lower panels in figure 1 show the frequency
of daily precipitation based on its pooled spatio-
temporal distribution, which corresponds to more
than 30 billion values for the highest zoom level. The
values are grouped into 0.01mmd−1 bins and nor-
malized by the total number of values for each zoom
level separately. The middle column shows the cor-
responding distributions for ICON and IFS, with the
left and right columns allowing a more detailed view
of the dry and wet extremes, respectively.

For precipitation values exceeding about
25mmd−1 the different zoom levels start to diverge
in figures 1(c) and (f) since cases with larger grid spa-
cing represent averages over larger areas, while cases
with smaller grid spacing are able to better resolve

local high-intensity events. This becomes even more
apparent in figures 1(d) and (g), where the frequency
of exceedance is shown up to precipitation rates of
1md−1. We note that these frequencies are based
on the globally pooled precipitation distribution,
which hides zonal and regional details. Yet, we choose
this approach here as we are mainly interested in
the effect of resolution on different extremes from a
top-level view and with focus on the global picture.
Maps of mean and extreme precipitation are shown
in figures S5 and S6 in the supplement.

Figures 1(b) and (e) zoom into the low end of
the precipitation distribution, showing the frequency
of dry days based on three thresholds. The highest
threshold with a daily precipitation rate of 1mm is
often used as definition for dry days in climate mod-
els to avoid what has been termed ‘drizzle bias’ and
to allow a fair comparison to observations (Trenberth
and Zhang 2018, Chen et al 2021). This bias emerges
due to the coarse model resolution and resulting
parametrizations that result in too few days with no
precipitation and too many days with small precip-
itation rates compared to the point measurements
provided by stations. Here, we use two additional
smaller thresholds (0.1mmd−1 and 0.01mmd−1),
showing the rapid decrease in dry days with coarsen-
ing resolutions. The 1 mmd−1 threshold, in turn,
reduces most of the resolution difference between
zoom levels 9 and 6 (13 km and 102 km, respectively)
in IFS, indicating that the threshold works as inten-
ded for this case. In ICON, however, the mitigating
effect is less pronounced due to its explicit represent-
ation of convection leading to smaller precipitation
cells (Takasuka et al 2025).

Finally, we highlight a notable difference between
the precipitation distributions of ICON and IFS,
which warrants future investigation: ICON is more
sensible to resolution, resulting in a larger spread
of frequencies at almost all precipitation rates
(figures 1(b) to (f)). As a result ICON has a higher
number of dry days at the highest zoom level than IFS,
and vice versa for the lowest zoom level (see alsoWille
et al 2024). At the same time, the IFS distributions
have heavier tails at all resolutions. Understanding
the underlying drivers of these differences is cru-
cial for reliably modeling precipitation, downstream
impact assessments, as well as furthermodel develop-
ment. Yet, such an investigation requires a dedicated
study and is outside of the scope of this work.

3.2. Spatial sub-grid variability
Next, we analyze the spatial information lost at res-
olutions typical for current GCMs from CMIP6. As
coarse grid spacing, we conservatively choose zoom
level 6 or 102 km gird spacing, which contains exactly
64 grid cells at zoom level 9 (13 km; see methods for
details). Zoom level 6 grid cells with low variabil-
ity, hence, indicate that the higher output resolution
does not add much information, while grid cells with
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Figure 1. (a) Spatial distribution of daily precipitation in ICON on a selected day (March 8th 2025) for the highest zoom level 9.
(b)–(g) Different views on the precipitation frequency for 0.01mmd−1 bins sampled in the period 2021–2049 and over all grid
cells (i.e. the total number of samples depends on the resolution). (b), (e) Dry days using different thresholds; (c), (f)
precipitation frequency smoothed using a running average of size 100; (d), (g) precipitation exceedance frequency.

high values highlight regionswhere the resolution of a
typical CMIP6model is not sufficient to represent the
spatial variability of extremes. We apply this method-
ology to a set of three extreme indices for temperature
(figure 2) and precipitation (figure 3), respectively.

3.2.1. Temperature extreme indices
For the annual maximum of daily maximum temper-
ature and summer days (figures 2(a)–(d)) three dis-
tinct regions can be identified where information is
hidden at coarse resolutions: coasts, topographically
complex regions, and larger water bodies over land
such as lakes and even larger rivers. From an impact
perspective, this finding alone is crucial as coastal
areas and large river basins are often densely pop-
ulated (Kummu et al 2011, Cosby et al 2024). As a
consequence, these results suggest that risk to human
society and infrastructure from heat extremes might

not be adequately captured when estimated from a
coarse resolution model; in fact, this misrepresenta-
tion mostly manifests as an underestimation of risk
following from an underestimation of the amplitude
of hot extremes on land as we will discuss in detail in
section 3.3.

Summer days, as an index with an absolute
threshold, have the additional property of their het-
erogenous climatology. At high latitudes and high
elevations, their climatological occurrence is zero,
while at some low-latitude regions every day exceeds
the 25 ◦C threshold (figure S7). Consequently, the
summer day sub-grid variability is zero in these
regions while their edges are coined by sharp geo-
graphical gradients in the summer day climato-
logy, leading to high sub-grid variability. Apparent
examples are the Andes in South America and the
Himalayas in Asia: both are framed by values of high
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Figure 2. Standard deviation across 64 high-resolution grid cells falling into each coarse-resolution grid cell for (a), (b) annual
maximum of daily maximum temperature, (c), (d) number of summer days, and (e), (f) warm spell duration. Shown is the
2021–2049 mean of annual values for (left) ICON and (right) IFS. Note that ocean grid cells are not masked, but appear white in
many cases due to their low variability.

variability in the transition zone where the finer grid
spacing resolves topographical gradients, while the
highest mountain ranges have no variability as tem-
peratures never exceed 25 ◦C (see also model topo-
graphy and its sub-grid variability in figure S14). A
similar consideration holds, for example for the top-
ical Pacific, where the number of summer days can
sharply transition from region saturated at 365 days to
regions with very low summer day counts (figure S7).

The strongest impact of km-scale resolution for
the representation of summer days can be found
at the northern end of the Andes in Ecuador and
Colombia, in Central America, and across the islands
of Indonesia, the Philippines, and Papa New Guinea.
Here, the effects of land-sea contrast and topography
are combined in regions with a high climatological
count of summer days due to their low latitude
location.

The warm spell duration index (figures 2(e) and
(f)) is distinct from the other two temperature-based
indices mainly because it uses a percentile-based
threshold. Coastal and topographical effects are less

pronounced with the relative threshold accounting
for them to a degree. In addition, the effect of clima-
tological differences (mainly between low and high
latitudes) is eliminated for percentile-based indices.
This is showcased in figure S4 for the example of
two conceptually similar indices based on an abso-
lute and relative threshold (summer days and hot
days, respectively). While the absolute threshold-
based summer days show a very clear imprint of
climatology, topography, and land-sea contrast, all
these effects are weakened for the relative threshold
hot days. Yet, some imprint of topography and land-
sea contrasts remains even for hot days, as mountain
ranges can lead to strongly varying conditions even
at neighboring grid cells and oceans dampen vari-
ability compared to land in general (see section S5
and figure S4 for additional discussion). Finally,
there are notable differences in the sub-grid vari-
ability between ICON and IFS in the equatorial
region. We will discuss these in the next section
together with the complementary differences in
precipitation.
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Figure 3. Standard deviation across 64 high-resolution grid cells falling into each coarse-resolution grid cell for (a), (b) the annual
maximum of daily precipitation, (c), (d) number of heavy rain days, and (e), (f) maximum annual length of consecutive wet days.
Shown is the 2021–2049 mean of annual values for (left) ICON and (right) IFS.

3.2.2. Precipitation extreme indices
The spatial patterns of sub-grid variability of extreme
precipitation (shown in figure 3) differ distinctively
from their temperature counterparts. Our assessment
of lost information at coarse scales shows high variab-
ility for the annual maximum of daily precipitation at
low latitudes that also have the highest absolute daily
precipitation (see supplement figure S9). In addition,
several hotspots coincide with large population cen-
ters such as the Gulf of Mexico, the Mediterranean,
and India. While agreeing on the spatial patterns of
this index, major differences between ICON and IFS
emerge in the amplitude of variability. IFS shows lar-
ger maxima of variability at low latitudes consist-
ent with the overall higher frequency of precipitation
extremes (figure 1).

For the number of days where daily precipita-
tion exceeds 10mm, the tropics show relatively high
variability based on a combination of high climato-
logical values and spatially heterogenous convective
cells dominating precipitation. Further, we detect a
high variability on the western sides of the moun-
tain ranges, where advective precipitation is enhanced
by orographic lifting on the windward sides. The

Himalayan mountain range is a particularly apparent
example showing high variability for all three precip-
itation extrememetrics. In addition to the orographic
effect, it marks the transition between regions with
high precipitation in the south to regions with hardly
any precipitation in the north (figures S2 and S9) and
is, hence, characterized by sharp gradients that are
better resolved at high resolution.

For the variability in the maximum number of
consecutive wet days, ICON and IFS also agree on
the general global pattern, but IFS simulates larger
sub-grid variability widely across the tropics, while
ICON only selectively shows high values in complex
topography. These differences are based on the con-
siderably lower absolute consecutive wet day count
in ICON compared to IFS (figure S9), which leads
to lower standard deviations (while the coefficient of
variation is generally higher in ICON; figure S12).
The differing behavior can be traced to the treatment
of convection, with work by Spät et al (2024) find-
ing that parametrizing convection leads to temporally
more persistent precipitation patterns in IFS (see also
lag 1 day auto-correlation in figure S11). ICON, in
turn, features more local precipitation events driven
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Figure 4. Climatology and sub-grid variability for the 10-year return level of hourly precipitation. (a), (b) Climatology at high
resolution and (c), (d) standard deviation across 64 high-resolution grid cells falling into each coarse-resolution grid cell. Shown
is the 2021–2049 mean of annual values for (left) ICON and (right) IFS.

by the explicit representation of convection. The pat-
tern in precipitation also corresponds relatively well
to an inverse pattern in the warm spell duration index
(figures 2(e) and (f)). Here, ICON featuresmore local
precipitation events driven by the explicit represent-
ation of convection, driving the high variability in
warm spells.

3.2.3. Precipitation return levels
For the return levels, we start by focusing on annual
maximum hourly precipitation itself rather than its
sub-grid variability (figures 4(a) and (b)). For this
hourly metric ICON features higher intensities than
IFS, in contrast to the daily values we have invest-
igated so far (figures 1 and 2). We suggest that this
relates to the differing representations of convection,
which become even more pronounced at sub-daily
time-scales. This difference in the amplitude then
propagates to the assessment of sub-grid variability
with values up to over 20mmh−1 in the tropics and
over 10mmh−1 in the Mediterranean and Central
Europe within the storm-resolving ICON simulation.

As sub-daily heavy rainfall is the main trigger for
urban flooding, the additional information contained
in km-scale models, compared to typical CMIP6-like
resolutions is of utmost importance for local adapt-
ation planning in cities. Locally, the higher resolu-
tion has the potential to improve the representation of
extreme precipitation at individual locations instead
of large areal averages on the one hand (figure 1)
and to better represent spatial variability on the other
hand (figure 4).

3.3. Spatial sub-grid anomaly
Finally, we point to the implications of resolution for
the assessment of climate impacts and associated risks
on the example of the hottest annual maximum. We
choose this index as the impacts of extreme heat are
very much non-linear (Gasparrini et al 2015, Vicedo-
Cabrera et al 2021) and a quantification of differences
between resolutions is therefore crucial for robust risk
assessments.

In figure 5(a), we show a global view of the
sub-grid anomaly for the hottest annual maximum,
which reveals the patterns driving the correspond-
ing sub-grid variability (figure 2(a)). For coasts and
land water, high variability arises from a dipole pat-
tern emerging from the moderating effect of water
bodies on air temperature that is better represen-
ted at the km-scale, while the coarse grid spacing of
100 km× 100 km averages both domains (see e.g. the
dipoles along the coast of India in figure 5(b) which
correspond to high sub-grid variability in the ocean
fraction; figure S13). For topography, the variabil-
ity arises from the better representation of elevation
and its gradients at higher resolutions, often lead-
ing to slightly more complex structures (see, e.g. the
strong anomalies at theHimalayanmountain range in
figure 5(b) corresponding to high sub-gird variability
in the topography; figure S14).

The zoom-in to the Indian subcontinent in
figure 5(b) reveals differences between the resolutions
exceeding 5 ◦C on most of the coastal land, where
many of the largest population centers of the region
are located (figure 5(c)). For the example of Karachi
(Pakistan), with more than 20 million inhabitants,
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Figure 5. High resolution minus low resolution difference for (a), (b) the annual maximum of daily maximum temperature. Four
major cities are marked by an arrow in (b) pointing to the high-resolution grid cell and a pink square highlighting the
low-resolution grid cell. (c) Population density from the worldpop (https://hub.worldpop.org/) dataset. The green contour-lines
indicate 500m elevation. (d)–(g) Distribution of anomalies from all 29 years at the four cities marked in (b) for ICON and IFS.
Each anomaly is the maximum of daily maximum temperature in a given year from the single high-resolution grid cell closest to
the city location minus the low-resolution grid cell within which it lies.

the annual maximum of daily maximum temperat-
ures can even be more than 10 ◦C hotter at high res-
olution in IFS (figure 5(d)). In Mumbai (India) the
effect is weaker but can still reach 5 ◦C in bothmodels.
For Chennai on the Indian east coast the two models
show some diversity with differences in ICON being
limited to less than 4 ◦C, while IFS reaches 6 ◦C. For
the city of Kathmandu (Nepal), the resolution effect is
reversed and temperatures are higher at coarse resol-
ution (figure 5(g)). This is due to its location at about
1.5 km elevation and on a mountain slope in com-
bination with the geometry of the coarse grid. As can
be seen in figure 5(b), Kathmandu is located at the
northern (and hence high) end of the coarse grid cell,
and therefore the average representation overestim-
ates maximum temperatures there, while it underes-
timates them in the lowlands to the south.

Sub-grid anomalies for the other extreme indices
discussed in the paper can be found in the supplement
(figures S8 and S10). We also discuss the annual
maximum of daily precipitation as an example for a
precipitation-based extreme index in more detail in
the supplement (section S2 and figure S2).

4. Summary and discussion

Drawing on ICON and IFS, two kilometer-scale,
fully-coupled GCMs, we have provided a global pic-
ture of the importance of model output resolution
for the representation of climate extremes in many
regions of the Earth. Our study is the first to quantify
the resolution effect at kilometer-scale consistently in
a global model and confirms earlier regional work
and process understanding. Our global approach is,
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hence, complementary to regional climate modeling
efforts and allows us to compare different regions
as well as to suggest areas for prioritization, where
dynamical downscaling or regional grid refinement
are most beneficial.

We calculated coarser resolutions from the high-
resolution (about 13 km grid spacing) ICON and IFS
data to allow a fully consistent comparison, isolat-
ing only the effect of output resolution. While this
approach is clearly not equivalent to actually run-
ning a climate model at coarser resolutions we argue
that it provides an upper limit for model fidelity at
a given resolution: running a model at high resolu-
tion and then remapping it to a coarser resolutionwill
lead to a better representation of reality than running
the model directly at a coarser resolution (given no
bugs emerge at higher resolutions and proper tuning;
Proske et al (2024)). In addition, the latter approach
necessarily introduces additional sources of differ-
ences only indirectly connected to resolution. ICON,
for example, is run with convection parametrization
disabled at its 10 km grid spacing, and running it at
considerably coarser resolutions would require activ-
ating this the parametrization, leading to consider-
able changes in themodel setup as a second-order res-
olution effect.

Our approach, hence, does not allow any conclu-
sions about absolute model performance nor do our
results necessarily indicate that higher resolution is
always better. Both points depend on a multitude of
factors and trade-offs. For example, a high-resolution
model is typically able to resolve more processes and
hence better from a physical perspective but empiric
parametrizations in a lower-resolution model might
still lead to better model performance compared to
observations.

Our results highlight the potential of kilometer-
scale models, such as those from nextGEMS (Segura
et al 2025) and DestinE (John et al 2024), for impact
assessments in global intercomparison projects such
as ISIMIP and GGCMI (Rosenzweig et al 2017,
Franke et al 2020) as well as in impact studies (e.g.
Lüthi et al 2023, Orlov et al 2024)). Here, we have
focused on a set of relatively simple standard indices
based on temperature and precipitation. The next
steps could be the combination of several climate
variables into more impact-relevant indices, such as
the wet-bulb temperature, as well as an analysis of the
effects of climate change. In particular, with continu-
ously increasing temperature records and the likely
exceedance of 1.5 ◦C global warming in the next dec-
ades (Bevacqua et al 2025), an accurate assessment of
climate extremes is crucial for robust risk assessments
(Sillmann et al 2024).
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