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Pitfalls in diagnosing temperature extremes

Lukas Brunner 1 & Aiko Voigt 1

Worsening temperature extremes are among the most severe impacts of
human-induced climate change. These extremes are often defined as rare
events that exceed a specific percentile threshold within the distribution of
daily maximum temperature. The percentile-based approach is chosen to
follow regional and seasonal temperature variations so that extremes can
occur globally and in all seasons, and frequently uses a running seasonal
window to increase the sample size for the threshold calculation. Here, we
show that running seasonal windows as used in many studies in recent years
introduce a time-, region-, and dataset-depended bias that can lead to a
striking underestimation of the expected extreme frequency. We reveal that
this bias arises from artificially mixing the mean seasonal cycle into the
extreme threshold and propose a simple solution that essentially eliminates it.
We then use the corrected extreme frequency as reference to show that the
bias also leads to an overestimation of future heatwave changes by asmuch as
30% in some regions. Based on these results we stress that running seasonal
windows should not be used without correction for estimating extremes and
their impacts.

Percentile-based temperature extremes are defined as events of a
certain rarity and are frequently used to derive downstream impact
metrics such as heatwaveproperties, particularly in awarming climate.
The aim of percentile-based extreme definitions is to account for
spatial [e.g.,1,2] and seasonal [e.g.,3–5] variations in temperature dis-
tributions, so that extremes can occur across the globe and through-
out the year. In addition, percentile-based extremes are intended to
offset differences between datasets such as models, reanalyses, and
observations [e.g., 2,6].

The rarity of the extreme is set by calculating exceedances of an
appropriate percentile threshold, typically on a daily basis. For exam-
ple, on average 10% of days are expected to have a maximum tem-
perature exceeding the 90th percentile when evaluated in the same
period as the threshold is calculated. This base period is frequently
chosen as 1961–1990 as recommended by the Expert Teamon Climate
Change Detection and Indices (ETCCDI; http://etccdi.pacificclimate.
org/list_27_indices.shtml;7).

The period length of 30 years is a compromise between the length
of the time series on the one hand and the number of samples available
for the percentile calculation on the other hand. In particular obser-
vational datasets often do not provide high-quality data for long time
periods, and longer periods may contain strong forced warming,

which is often undesirable. Short time periods, in turn, limit the
number of samples on which the percentile threshold is based, which
can lead to considerable biases8. Therefore, individual studies have
also used longer periods5,9–12.

The ETCCDI recommends a 5-day running window across the
seasonal cycle to counter the limited number of samples. Combined
with the recommended 30-year period, this results in a sample size of
150 values per calendar day for the percentile calculation. However,
many recent heatwave studies do not follow this recommendation and
use longer windows of 15 days4,5,9,10,12–19 or even 31 days6,20–28. Notably,
the widely used Heat Wave Magnitude Index daily (HWMId) is defined
based on a 31-day running window29. The decision to deviate from the
ETCCDI recommendation and use a longer window is often not
explicitly motivated in the literature. However, it can be assumed that
the intention is to increase the sample size beyond 150 values in order
to avoid biases in the frequency of exceedances8 as well as large var-
iations in the extreme threshold between adjacent calendar days16.

In the following, we reveal serious pitfalls when using such long-
running windows. We show that they lead to large and systematic
biases in the frequency of temperature extremes and discuss how
these biases undermine commonly accepted assumptions about the
properties of percentile-based extreme definitions. We demonstrate a
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simple solution that essentially eliminates the bias and uses the cor-
rected frequencies as a reference to investigate the effect of thebiason
estimates of extreme changes under warming.

Results
Systematic biases in percentile-based temperature extremes
We define a bias in the frequency of daily maximum temperature
extremes as a deviation from the theoretically expected extreme fre-
quency. As an example: for the 90thpercentile the expected frequency
is 10% extreme days on average when calculating threshold and
extremes in the same period (see methods for details). However, we
find that in the ERA5 dataset, the 1961–1990 average, global average,
daily maximum temperature extreme frequency based on the 90th
percentile using a 31-day running window (TX90p31w) is only 9%, a
relative biasof−10%. Regionally thebias canbeconsiderably larger and
exceed −30% as shown in Fig. 1a for ERA5 and in Fig. S1 in the supple-
mentary information for the CMIP6 multi-model mean.

In individualmonths, the bias can be even larger, exceeding −75%.
This almost excludes the occurrence of extremes altogether as shown
in Fig. 1c for the example of a grid cell with a strong bias in the North
Atlantic. This striking underestimation of threshold exceedances,
particularly in the transition seasons, may seem counter-intuitive: The
movingwindowused in the percentile calculation is symmetric around
each calendar day—it encompasses both seasonally colder as well as
seasonally warmer values. One might expect these to average out and
lead to the desired smooth and well-defined extreme threshold, which
is exceeded for ~10% of days throughout the seasonal cycle and across
the globe. But this expectation does not hold as the threshold is, by
design, an extreme percentile and not an average. It is, therefore,
dominated by the seasonally warmer days in the window, making it
exceedingly unlikely for the considered central day to exceed the
threshold if (1) the seasonal gradient is strong and (2) the day-to-day
variability is low.

The strongest bias is, hence, found in regions and seasons with a
strong seasonal gradient but weak day-to-day variability, as showcased
in Fig. 1c and Fig. S2. While many of the strongest biases, therefore,
occur over oceans there are also several land regionswith considerable
bias such as India and the western US (Fig. S2a, c). Across most of
Europe the strong seasonal cycle is offset by strong day-to-day varia-
bility, and only a weak bias remains (Fig. S2e). In regions with weak
seasonal variations, such as most of the tropics and the Southern
Ocean (Fig. S2i), the bias is consequently negligible. In the following,
we will refer to this bias as running window bias.

To further investigate and contextualise this running window
bias, we build on a study by Zhang et al.8 based on synthetic data.
As detailed in the methods, we include an additional seasonal cycle
of varying amplitude into their auto-correlated white noise data.
Figure 2a shows the frequency bias in absence of a seasonal cycle
reproducing their results. For the in-base case, the same random
sample is used to calculate the threshold and the exceedances; for
the out-of-base case, exceedances are based on but the same
threshold but a new random sample. The bias for the 5-day window is
equivalent to Zhang et al.8, while we use a slightly different second
window size of 31 days (as opposed to their 25 days) to be consistent
with the rest of our work.

The difference between the out-of-base and in-base and bias is
shown in Fig. 2b. The temporal inhomogeneity introduced by this
difference is widely recognised in the community and can be cor-
rected following the recommendation by the ETCCDI and Zhang
et al.8. For the 5 day window, the bias (Fig. 2a) and the difference
(Fig. 2b) grow strongly with increasing percentile and vary peri-
odically due to the the limited number of samples, as discussed in
detail by Zhang et al.8. Based on this result alone, it is under-
standable why a longer window seems preferable, with the bias in
Fig. 2a,b remaining much lower for the 31-day running window,
especially for high percentiles.

Fig. 1 | Bias in the frequency of temperature extremes in ERA5. a Spatial bias
distribution in the frequency of daily maximum temperature extremes based on
exceedances of the 90th percentile using a 31-day running window (TX90p31w) in
the period 1961–1990. c Daily thresholds (thick red line), exceedances (red shad-
ing), and monthly averaged frequencies (bars) for a selected grid cell in the North

Atlantic.b,d same as (a, c) butwith thebias correction appliedbefore the threshold
calculation (discussed in the second part of the manuscript). The shown grid cell is
marked with a red rectangle in a, additional grid cells are marked by orange rec-
tangles and shown in Fig. S2 in the supplementary information.

Article https://doi.org/10.1038/s41467-024-46349-x

Nature Communications |         (2024) 15:2087 2



Crucially, however, this advantage of the longer window does not
hold in the presence of even a moderately strong seasonal cycle
(equivalent to the median in ERA5) as shown in Fig. 2c. While the bias
for the 5-day window hardly changes compared to the case without a
seasonal cycle, the 31-day running window leads to heavily increased
bias. In fact, the running window bias introduced by the seasonally
runningwindow in combinationwith a seasonal cycle is larger than the
bias due to the limited number of samples in Fig. 2a and larger than the
difference in Fig. 2b for all but the highest percentiles. The evolutionof
this running window bias across the seasonal cycle is shown in Fig. S3
for a range of different window sizes.

Pitfalls in the interpretation of temperature extremes
The presence of the running window bias undermines the main
assumption about percentile-based extreme definitions made (more
or less explicitly) by many studies, namely that they allow extremes
equally across the seasonal cycle [e.g.,4,9,14]. In the following, wediscuss
three additional pitfalls in the interpretation of extremes and connect
them to further assumptions about percentile-based extremesmade in
the literature: (1) spatial inhomogeneities, (2) artificial dataset differ-
ences, and (3) spurious change signals.

(1) An important argument for the use of percentile-based indices
is that they are based on thresholds following the local temperature
distribution, thus making extremes and their changes comparable
between regions [e.g.,15,30]. However, for a fair comparison, the prob-
ability for extremes should be the same across regions, which is
undermined by the spatial variations of the bias (see Fig. 1a). As a
measure for the unequal treatment of regions with low and high bias in
a comparison we define spatial inhomogeneity as the difference

between the spatial 5th and95th percentiles of grid cell biases. Figure 3
shows the spatial inhomogeneities for different combinations of per-
centiles and window sizes. They generally worsen with increasing
percentile andwindow size, for TX90p31w, the inhomogeneity reaches
~25%. Note that for high percentiles and small window sizes, the mean
bias greatly increases due to a lack of samples, so these cases are also
problematic even though they have little or no spatial inhomogeneities
(see ref. 8 for a detailed discussion). For TX90p5w (recommended by
the ETCCDI) the globalmean bias is almost zero, which is also reflected
in a small inhomogeneity of ~3%, showing that this setup allows a fair
comparison between regions. We note, however, that for such short
window sizes the limited number of samples also leads to a bias
(Fig. 2a) and to strong day-to-day variations in the extreme threshold,
which might also pose a problem. Finally, we also show the 50th per-
centile in Fig. 3 to demonstrate that central estimates are not affected
by the running window bias.

(2) Another important argument for percentile-based indices is
that they provide an implicit bias correction of models compared to
observations [e.g., refs. 2, 6]. The underlying extreme frequencies are,
hence, assumed to be the same when analysing derived heatwave
properties, such as duration, area, or cumulative heat. Thismeans that
any model-observation differences in these derived metrics are inter-
preted as higher-order differences. However, differences in these
metrics can also result from a diverging bias structure leading to
artificial dataset differences. Figure 4a shows the CMIP6 multi-model
mean artificial difference to ERA5 and reveals several regions where
model-observation differences exceed ± 10% robustly across most of
the 26models used. To illustrate the extent of possible differences, we
compare a grid cell in the Amazon region between ERA5 and the

Fig. 2 | Bias in the extreme frequency for different percentiles in synthetic data.
a Evolution of in-base (orange) and out-of-base (green) bias for two window sizes
and different percentile values without seasonal cycle. b Difference between the

out-of-base and in-base biases in a. c In-base bias without (orange) and for a
moderate (blue) and strong (red) seasonal cycle. The 5-day running window is
dashed, and the 31-day window is solid in all panels.

Fig. 3 | Spatially aggregated bias statistics in ERA5. a Statistics for different
combinations of percentile and window size, with the highlighted rectangle
showing the case corresponding to Fig. 1a (see Fig. S4 for additional bias maps).
Spatial inhomogeneities (bold value in the top line) are defined as the difference
between regions with high and low bias and provide a measure of the unequal

treatment of regions with different biases. The low and high biases, defined as the
spatial 5th and 95th percentiles, respectively, are shown in the middle line. The
global mean bias is shown in the bottom line. The shading is locked to the inho-
mogeneities, with higher values shown in darker red. b Same as a but with the bias
correction applied before the threshold calculation.
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CanESM5 model in Fig. 4c. The differences in the extreme frequency
exceed 70% in April, due to a wrong representation of the mean sea-
sonal cycle in CanESM5. Such a difference could easily be mis-
interpreted as a wrong representation of extremes in CanESM5
compared to ERA5 but is, in fact, founded in a wrong mean seasonal
cycle interacting with the running window.

(3) A final argument for percentile-based temperature extreme
definitions is that they account for the warming trend when using
shifting baselines [e.g., refs. 20, 21]. This is intended to allow, for
example, the investigation of non-linear changes in heatwave proper-
ties under climate change and, generally, follows an interpretation of
extremes as events, which are rare by definition, even in a warming
world [e.g., refs. 31, 32]. However, the running window bias can
shift between time periods and translate into spurious change signals.
Figure 5a shows such spurious change signals as the difference
between two periods, for which separate thresholds are calculated:
historical (1961–1990) and future (2071–2100) using the high emission
scenario SSP3-7.0. Figure 5d shows a grid cell in the Arabian Sea for the
CanESM5 model as an example. The decrease in the amplitude of the
mean seasonal cycle in the future leads to a greatly reduced running
window bias and, therefore, a striking increase in extreme day fre-
quency by >30% in the annual mean. For the month of September,
where extremes were basically absent in the historical period, the
frequency even increases by a factor of 15.

A simple solution to eliminate the running window bias
To essentially eliminate the running bias even when using a 31-day
window, we suggest to account for the seasonal variations first, to
avoid mixing them into the extreme threshold. A simple way of doing
so is to remove the mean seasonal cycle before calculating the
threshold and subsequent extremes (see methods for details). In fact,
this has been proposed already as early as 1999 by Folland et al.33 and
Jones et al.34 and later been reiterated by Zhang et al.8, but it has not
been applied in the recent literature to the best of our knowledge. One

reason for this may be that these earlier studies did not discuss the
potential for biased results due to the seasonal cycle we show here.

Figure 1b, d clearly reveals the benefit of removing the mean
seasonal cycle before calculating extreme frequencies. The global
mean frequency bias is reduced from −10% to −0.5% and from −33% to
0% for the example grid cell in the North Atlantic (see Fig. S2 for the
other example grid cells). As a result, the spatial inhomogeneity is also
vastly reduced from 24% to 3% (Fig. 3), and hardly any systematic bias
pattern remains.

Exceptions are regions in the Southern Ocean and Arctic Ocean
where the correction leads to a slight increase in bias. In the Southern
Ocean the upper end of the temperature distribution is mostly con-
stant throughout the year, basically following the 0 ∘C isotherm
(Fig. S2i) when the seasonal cycle is still included. In the Arctic Ocean
the same is trueduringnorthern hemispheric summer (Fig. S2g). At the
same time, these regions also exhibit a strong seasonality in the day-to-
day variability, with the amplitude being considerably lower during
summer. This leads to an increase in the seasonality of the 90th per-
centile thresholdwhen themeanseasonal cycle is removed and, hence,
to a slight increase in the running window bias. However, the bias in
these regions is small overall, with the highest amplitudes staying
below 10% in both the uncorrected and corrected cases.

Artificial dataset differences are also greatly reduced when
the mean seasonal cycle is first removed (Fig. 4b). The fraction of
grid cells with robust differences (stippling in Fig. 4a,c) decreases
from 37% to 2% when the correction is applied. Figure 4d shows
the example of the grid cell in the Amazon that removes the mean
seasonal cycle before calculating the threshold accounts for off-
sets between the datasets. The same holds true for differences
between time periods, when using multiple base periods as shown
in Fig. 5. The spurious change signal showcased for the grid cell in
the Arabian Sea is essentially eliminated, and the only robust
differences remaining are at high latitudes, connected to the
changes in day-to-day variability discussed above.

Fig. 4 | Artificial frequencydifferences betweenCMIP6andERA5. aCMIP6multi-
model mean extreme temperature (TX90p31w) frequency relative to ERA5 in the
period 1961–1990. c CanESM5 extreme frequency for a selected grid cell with large
differences in the Amazon region compared to ERA5. b, d same as a, c but with the

bias correction applied before the threshold calculation. The shown grid cell is
marked with a red rectangle in a. Areas with more than 80% of CMIP6 models
agreeingon the sign anddifferences larger than± 2% (lightest shading) are stippled.
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Impact of the bias on heatwave changes
Now we use the corrected extreme frequencies as a reference to show
the impact of the running window bias on climate change signals. We
focus on two metrics: (1) annual mean extreme frequency, which cor-
responds to the rest of our study and (2) summer heatwaves. The
second metric is calculated from the extreme frequencies by restrict-
ing them to the respective extended summer season in both hemi-
spheres and then applying a 3-day persistence criterion following, for
example, Lyon et al.16 and Perkins–Kirkpatrick and Lewis17. As change
metric we show the CMIP6 multi-model mean ratio between
2071–2100 and 1961–1990 frequencies following Fischer and Schär4

(seemethods for details). Extremes in the future are calculated using a
fixed 1961–1990 threshold in this section.

For the change in the extreme frequency,we can set anupper limit
to the ratio based on theoretical considerations: if we expect a his-
torical extreme frequency of about 10%, then a tenfold increase should
be the maximum, corresponding to every day being extreme in the
future. However, the historical extreme frequency can be considerably
lower due to the running window bias, as we have shown. At the same
time the extreme frequency greatly increases in the future when using
a fixed baseline, leading to a decrease in the bias everywhere on the
globe (Fig. S6). Figure 6 (top row) shows changes exceeding a factor of
13 for the biased case, while our correction leads to increases being
mostly limited to the theoretical maximum. A direct comparison of
extreme changes between biased and corrected cases is shown in
Fig. 6c and reveals that the bias leads to an overestimation of extreme
changes inmost regions. The overall pattern is similar to the historical
bias shown in Fig. 1a, which consists of our expectations based on the
general decrease of bias in the future.

Finally, we repeat the same steps as above for the case of exten-
ded summer heatwaves, which is a frequently used metric in more
impact-focused studies. For this case, no a priori theoretical maximum
for the increase exists since the 3-day persistence criterion leads to
spatially varying heatwave frequencies in the historical period (ranging

between 3% to 7%; see Fig. S7a, d). Figure 6d shows the resulting bias in
the heatwave ratio with ocean grid cells masked to highlight changes
over land. The Arabian Peninsula is a particular hot spot of over-
estimation which can exceed 30% here. This is founded in a strong
historical bias combinedwith a strong reduction in bias in the future as
heatwave frequency approaches 100% in this region (Fig. S6).

Discussion
Wehavedemonstrated that the percentile-based temperature extreme
frequency can exhibit considerable deviations from the expected fre-
quency due to a bias introduced by the use of running seasonal win-
dows. This running window bias can vary with season, region, time
period, and dataset undermining generally accepted properties of
percentile-based extreme definitions. The bias changes in the future
and, therefore, has implications also for climate changes studies. We
also note that, while we have demonstrated the effect on hot extremes
here, the same considerations apply equally to cold extremes.

Oneway to avoid the runningbias is to limit the size of the running
window to 5 days as recommended by the Expert Team on Climate
Change Detection and Indices (ETCCDI), since such a window length
causes only a negligible running window bias. However, the limited
sample size in this case can also lead to a bias and to the sampling of
day-to-day variability into the threshold, which may also pose a
problem.

To allow the use of longer-running windows without bias, we
recommend removing the mean seasonal cycle before calculating the
extreme threshold. This essentially eliminates the bias as shown for the
annual extreme frequency. Drawing on the corrected frequencies as
reference, we show that the running window bias also affects summer
heatwaves based on biased extreme frequencies. The effect on other
derived extreme metrics and heatwave properties remains to be
investigated.

To conclude, we strongly warn against the use of long-running
windowswithout correctionwhen calculating extreme thresholds. The

Fig. 5 | Spurious change signals between 1961 and 1990 and 2071 and 2100
in CMIP6. a CMIP6 multi-model mean difference between the periods 1961–1990
and 2071–2100 using separate extreme thresholds for each period. c CanESM5
extreme frequency in both periods for a selected grid cell with a strong signal in the

Arabian Sea. b, d Same as a, c but with the bias correction applied before the
threshold calculation. The shown grid cell is marked with an orange rectangle in a.
Areas with more than 80% of CMIP6 models agreeing on the sign and differences
larger than ±2% (lightest shading) are stippled.
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use of such a biased method is never advisable, even though the
impacts onderivedmetricsmight not always be strong or immediately
apparent.Many studies, naturally, adoptmethods frompreviouswork,
so avoiding the use of biased methods also helps to prevent their
spread. Crucially, the same biasedmethodmayhave a negligible effect
in one setting and a large impact in another.

Methods
ERA5 data
We draw on data from the fifth generation of the European Centre for
Medium-Range Weather Forecasts (ECMWF) Retrospective Analysis
(ERA535;). We use hourly instantaneous 2 m surface air temperature
with a native resolution of 0.25° × 0.25°, re-sampled to the daily max-
imum value and a spatial resolution of 2.5° × 2.5° using conservative
remapping and restricted to the 30-year period 1961–1990. To simplify
seasonal cycle-related calculations, we exclude February 29th from
leap years so that each of the 30 years has 365 days.

CMIP6 data
To complement ERA5, we also use daily maximum 2 m surface air
temperature from 26models from the CoupledModel Intercomparison
Project Phase 6 (CMIP636;) as listed in table S1 in the supplementary
information. These models represent an “ensemble of opportunity” of
allmodels that are available from the ETHZurichCMIP6next-generation
archive37 and provide daily maximum temperature for the historical
period and the Shared Socio-economic Pathway 3-7.0 (SSP3-7.038;) in the
future. While we acknowledge that this pool of models does not con-
stitute a representative or exhausting sample of the full diversity of
models in the CMIP6 archive [e.g., refs. 39, 40] our aim here is mainly to
showcase the potential for biases in the calculation of extremes rather
than an in-depth model evaluation and we, therefore, chose this prag-
matic approach. The pre-processing applied to the CMIP6 models is
identical to ERA5, except that we use the period 2071–2100 in addition.

Calculation of percentile-based extreme thresholds
Extreme thresholds are defined for each dataset and grid cell sepa-
rately by calculating the p-th percentile over 30 years and the ±d days
surrounding each day of the year. Temperature extremes for a given
day are then defined as exceedances of the respective percentile value
centred on the same dayof the year. In our study, we focus on the 90th
percentile calculated using a 31-day window (termed TX90p31w) but
also investigate a range of other combinations of percentiles and
window sizes to identify their interaction with the seasonal cycle.

The calculation of percentiles is done empirically on the pooled
data from the 30 years and ±d days, so on 30×31 = 930 values for
TX90p31w. Modern programming languages offer a range of choices to
calculate the percentile and the choice of method can influence the
results, in particular for high percentiles, which are exceeded by only a
few values. For the main part of the manuscript we use the method
“linear”, which is the default setting in Python’s NumPy package (https://
numpy.org/doc/stable/reference/generated/numpy.percentile.html), in
R (https://stat.ethz.ch/R-manual/R-devel/library/stats/html/quantile.
html), and in Julia (https://docs.julialang.org/en/v1/stdlib/Statistics/). It
can, therefore, be assumed to be a frequently employed setting for the
calculation of percentile-based thresholds. For our comparison to the
results from Zhang et al.8 in Fig. 2 we, instead, use NumPy’s “wei-
bull”method tobe consistentwith their approach. Biases similar to Fig. 2
but using “linear” are shown in Fig. S8 in the supplementary information.

Calculation of extreme frequency, bias, and difference
The extreme frequency f (p, w) is the fraction of days exceeding the
extreme threshold in a given month or the entire year in percent:

f ðp,wÞ= xexceedðp,wÞ
xbase

× 100%, ð1Þ

with p indicating the percentile and w the window size.

Fig. 6 | Change in the extreme frequency between 1961 and 1990 and 2071 and
2100 in CMIP6. Top row: Change in the frequency of daily maximum temperature
extremes as the ratio of the 2071–2100 and 1961–1990 periods, using 1961–1990 as
fixed baseline for the a uncorrected and b corrected cases. Ratios above ×10 are
highlighted in purple as they are only possible due to the bias in the historical

period. c Bias in the extreme frequency change relative to the corrected case.
d Same as c but restricted to the extended summer season and with an additional
3-day persistence criterion. To highlight changes on land, ocean grid cells are
masked for this case. Intermediate steps for d are shown in Fig. S7.
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The running window bias f 0ðp,wÞ is defined as the extreme fre-
quency minus the expected extreme frequency f expðpÞ= 100� p (so
10% for the 90th percentile, as an example) divided by the expected
frequency in percent:

f 0ðp,wÞ= f ðp,wÞ � f expðpÞ
f expðpÞ

× 100% ð2Þ

In Fig. 6 we use the corrected frequency as f exp.
Equivalently, the differenceΔf between two datasets or periods is

calculated relative to the reference extreme frequency fref (p,w) fol-
lowing:

Δf ðp,wÞ= f ðp,wÞ � f ref ðp,wÞ
f ref ðp,wÞ × 100% ð3Þ

With the reference being ERA5 in Fig. 4 and the historical period
in Fig. 5.

Removing the mean seasonal cycle
The mean seasonal cycle is calculated over 30 years on a day-of-the-
year basis (and, hence, without any running window) for each grid cell
separately. We choose this approach here for its simplicity, an alter-
native option would be to use a running window in the calculation for
the mean seasonal cycle to increase the sample size. This is not pro-
blematic as central estimates are not affected by the running window
bias (see Fig. 3).

For the historical 1961–1990 period the mean seasonal cycle is
always calculated in the same period. For the future two options exist:
(1) for Fig. 5 the mean seasonal cycle for the 2071–2100 period is used,
mirroring the percentile calculation with multiple baselines; (2) for
Fig. 6 the historical 1961–1990 seasonal cycle is used.

Calculation of summer heatwaves and climate change signals
In a first step extremes are constrained to the extended summer sea-
son: May-September in the northern and November-March in the
southernhemisphere. Thenheatwaves aredefined at a grid cell basis as
at least three consecutive extremedays. Finally, to select land grid cells
we apply a common land-sea mask to the regridded data, based on
Natural Earth (https://www.naturalearthdata.com/) and implemented
in Python’s regionmask package (https://regionmask.readthedocs.io).

Climate change signals between the periods 1961–1990 and
2071–2100 (using the first period as fixed baseline for both cases) in
the last section are calculated as extreme frequency ratio r following
Fischer and Schär4:

r =
f 2071-2100
f 1961-1990

ð4Þ

For such a comparison of frequencies between in-base and out-of-base
periods (Fig. 6) Zhang et al.8 recommend the use of a cross-validation
approach to avoid an artificial frequency jump between the periods.
Their cross-validated extreme frequency is calculated as mean over 29
folds for eachof the in-base years (see ref. 8 fordetails). Thismeans the
output is no longer a time series of individual days exceeding the
threshold or not, but an average extreme frequency. This prohibits
the calculation of heatwaves from the extreme frequency by applying
the 3-day persistence criterion. Therefore, we, here, directly use the
extreme frequency to calculate heatwaves in the base-period as well as
outside, again, following Fischer and Schär4. In this context, we note
that the jump for the 90th percentile using a 31-day window is very
small at only ~3% as can be seen fromFig. S8. In addition, we focus on a
comparison between the uncorrected and corrected frequencies in
Fig. 6, which are both affected equally by the jump.

Creation of synthetic time series
For the creation of the synthetic time series, we combine auto-
correlated white noise emulating day-to-day variability and a sine-
function emulating the seasonal cycle. The white noise is defined to
have a mean of zero, a standard deviation of one, and a lag 1-day auto-
correlation of 0.8. The lag 1-day auto-correlation of 0.8 is used to be
consistent with the work by Zhang et al.8 and because it is reasonably
close to the median lag 1-day auto-correlation of the de-seasonalized
day-to-day variability in ERA5, which is 0.76 in the period 1961–1990.

The amplitude of the sine function is set to three distinct values so
that the ratio of the standard deviation over the seasonal cycle and the
standard deviation over the white noise (which is one by definition)
represents three cases: 0 (no seasonal cycle), 1.8 (same as the spatial
median in ERA5), and 3 (corresponding to the 90thpercentile in ERA5).

The ratio of standard deviations Δs in ERA5 is calculated for each
grid cell separately following:

Δs =
<xðdÞ>

<xðy,dÞ � xðdÞ>
, ð5Þ

where the enumerator is the standard deviation of the mean seasonal
cycle (calculated on a day-of-the-year basis with a window size of 1 and
the denominator is themeanover standard deviations calculated from
the de-seasonalized day-to-day variability for each year separately.

Following Zhang et al.8 we produce a synthetic 30-year interval
and calculate the percentile threshold, exceedance, and bias from it
(in-base case). For the out-of-base case we produce a separate 30-year
interval which is evaluated against the threshold calculated from the
first 30 years. This process is repeated 5000 times, and the presented
biases are the average over all iterations.

Data availability
All raw data used in this study are freely available for research applica-
tions. ERA5 hourly 2 m temperature: https://cds.climate.copernicus.eu/
cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview; CMIP6
daily maximum 2m surface air temperature: https://esgf-node.llnl.gov/;
An example dataset providing extreme frequencies for ERA5 using a 31-
day window for the 90th percentile is available here: https://doi.org/10.
5281/zenodo.10639317.

Code availability
The code to re-create the figures in themainmanuscript is available at:
https://github.com/lukasbrunner/running_window_bias.
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