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Abstract. The sixth Coupled Model Intercomparison Project (CMIP6) constitutes the latest update on expected
future climate change based on a new generation of climate models. To extract reliable estimates of future warm-
ing and related uncertainties from these models, the spread in their projections is often translated into probabilis-
tic estimates such as the mean and likely range. Here, we use a model weighting approach, which accounts for the
models’ historical performance based on several diagnostics as well as model interdependence within the CMIP6
ensemble, to calculate constrained distributions of global mean temperature change. We investigate the skill of
our approach in a perfect model test, where we use previous-generation CMIP5 models as pseudo-observations
in the historical period. The performance of the distribution weighted in the abovementioned manner with re-
spect to matching the pseudo-observations in the future is then evaluated, and we find a mean increase in skill of
about 17 % compared with the unweighted distribution. In addition, we show that our independence metric cor-
rectly clusters models known to be similar based on a CMIP6 “family tree”, which enables the application of a
weighting based on the degree of inter-model dependence. We then apply the weighting approach, based on two
observational estimates (the fifth generation of the European Centre for Medium-Range Weather Forecasts Ret-
rospective Analysis – ERA5, and the Modern-Era Retrospective analysis for Research and Applications, version
2 – MERRA-2), to constrain CMIP6 projections under weak (SSP1-2.6) and strong (SSP5-8.5) climate change
scenarios (SSP refers to the Shared Socioeconomic Pathways). Our results show a reduction in the projected
mean warming for both scenarios because some CMIP6 models with high future warming receive systemati-
cally lower performance weights. The mean of end-of-century warming (2081–2100 relative to 1995–2014) for
SSP5-8.5 with weighting is 3.7 ◦C, compared with 4.1 ◦C without weighting; the likely (66%) uncertainty range
is 3.1 to 4.6 ◦C, which equates to a 13 % decrease in spread. For SSP1-2.6, the weighted end-of-century warm-
ing is 1 ◦C (0.7 to 1.4 ◦C), which results in a reduction of −0.1 ◦C in the mean and −24 % in the likely range
compared with the unweighted case.

1 Introduction

Projections of future climate by Earth system models provide
a crucial source of information for adaptation planing, miti-
gation decisions, and the scientific community alike. Many
of these climate model projections are coordinated and pro-
vided within the frame of the Coupled Model Intercompar-

ison Projects (CMIPs), which are now in phase 6 (Eyring
et al., 2016). A typical way of communicating information
from such multi-model ensembles (MMEs) is through a best
estimate and an uncertainty range or a probabilistic distribu-
tion. In doing so, it is important to make sure that the differ-
ent sources of uncertainty are identified, discussed, and ac-
counted for, in order to provide reliable information without
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being overconfident. In climate science, three main sources
of uncertainty are typically identified in MMEs: (i) uncer-
tainty in future emissions, (ii) internal variability of the
climate system, and (iii) model response uncertainty (e.g.,
Hawkins and Sutton, 2009; Knutti et al., 2010).

Uncertainty due to future emissions can easily be iso-
lated by making projections conditional on scenarios such
as the Shared Socioeconomic Pathways (SSPs) in CMIP6
(O’Neill et al., 2014) or the Representative Concentration
Pathways (RCPs) in CMIP5 (van Vuuren et al., 2011). The
other two sources of uncertainty are harder to quantify, as re-
liably separating them is often challenging (e.g., Kay et al.,
2015; Maher et al., 2019). Model uncertainty (sometimes
also referred to as structural uncertainty or response uncer-
tainty) is used here to describe the differing responses of cli-
mate models to a given forcing due to their structural differ-
ences following the definition by Hawkins and Sutton (2009).
Such different responses to the same forcing can emerge due
to different processes and feedbacks as well as due to the
parametrization used in the different models, among other
things (e.g., Zelinka et al., 2020).

In this paper, internal variability refers to a model’s sensi-
tivity to the initial conditions as captured by initial-condition
ensemble members (e.g., Deser et al., 2012). In this sense,
it stems from the chaotic behavior of the climate system
at different timescales and is highly dependent on the vari-
able of interest as well as the period and region consid-
ered. While, for example, uncertainty in global mean tem-
perature is mainly dominated by differences between mod-
els, the regional temperature trends are considerably more
dependent on internal variability. Recently, efforts have been
made to use so-called single model initial-condition large en-
sembles (SMILEs) to investigate internal variability in the
climate projections more comprehensively (e.g., Kay et al.,
2015; Maher et al., 2019; Lehner et al., 2020; Merrifield
et al., 2020).

Depending on the composition of the MME investigated,
uncertainty estimates often fail to reflect the fact that in-
cluded models are not independent of one another. In the de-
velopment process of climate models, ideas, code, and even
full components are shared between institutions, or models
might be branched from one another in order to investigate
specific questions. This can lead to some models (or model
components) being copied more often, resulting in an over-
representation of their respective internal variability or sen-
sitivity to forcing (Masson and Knutti, 2011; Bishop and
Abramowitz, 2013; Knutti et al., 2013; Boé and Terray, 2015;
Boé, 2018). The CMIP MMEs in particular have not been
designed with the aim of including only independent models
and are, therefore, sometimes referred to as “ensembles of
opportunity” (e.g., Tebaldi and Knutti, 2007), incorporating
as many models as possible. Thus, when calculating prob-
abilities based on such MMEs it is important to account for
model interdependence in order to accurately translate model

spread into estimates of mean change and related uncertain-
ties (Knutti, 2010; Knutti et al., 2010).

In addition, not all models represent the aspects of the cli-
mate system relevant to a given question equally well. To
account for this, a variety of different approaches have been
used to weight, sub-select, or constrain models based on their
historical performance. This has been done both regionally
and globally as well as for a range of different target met-
rics such as end-of-century temperature change or transient
climate response (TCR); for an overview, the reader is re-
ferred to studies such as Knutti et al. (2017a), Eyring et al.
(2019), and Brunner et al. (2020b). Global mean tempera-
ture increase in particular is one of the most widely dis-
cussed effects of continuing climate change and the main
focus of many public and political discussions. With the re-
lease of the new generation of CMIP6 models, this discussion
has been sparked yet again, as several CMIP6 models show
stronger warming than most of the earlier-generation CMIP5
models (Andrews et al., 2019; Gettelman et al., 2019; Golaz
et al., 2019; Voldoire et al., 2019; Swart et al., 2019; Zelinka
et al., 2020; Forster et al., 2020). This raises the question of
whether these models are accurate representations of the cli-
mate system and what that means for the interpretation of
the historical climate record and the expected change due to
future anthropogenic emissions.

Here, we use the climate model weighting by indepen-
dence and performance (ClimWIP) method (e.g., Knutti
et al., 2017b; Lorenz et al., 2018; Brunner et al., 2019; Mer-
rifield et al., 2020) to weight models in the CMIP6 MME.
Weights are based on (i) each model’s performance with re-
spect to simulating historical properties of the climate sys-
tem, such as horizontally resolved anomaly, variability, and
trend fields, and (ii) its independence from the other models
in the ensemble, which is estimated based on the shared bi-
ases of climatology. In contrast to many other methods that
constrain model projections based on only one observable
quantity, such as the warming trend (e.g., Giorgi and Mearns,
2002; Ribes et al., 2017; Jiménez-de-la Cuesta and Maurit-
sen, 2019; Liang et al., 2020; Nijsse et al., 2020; Tokarska
et al., 2020), ClimWIP is based on multiple diagnostics, rep-
resenting different aspects of the climate system. These di-
agnostics are chosen to evaluate a model’s performance with
respect to simulating observed climatology, variability, and
trend patterns. Note that, in contrast to other approaches such
as emergent constraint-based methods, some of these diag-
nostics might not be highly correlated with the target metric
(however, it is still important that they are physically rele-
vant in order to avoid introducing noise without useful in-
formation in the weighting). Combining a range of relevant
diagnostics is less prone to overconfidence, as the risk of up-
weighting a model because it “accidentally” fits observations
for one diagnostic while being far away from them in sev-
eral others is greatly reduced. In turn, methods that are based
on such a basket of diagnostics have been found to generally
lead to weaker constraints (Sanderson et al., 2017; Brunner

Earth Syst. Dynam., 11, 995–1012, 2020 https://doi.org/10.5194/esd-11-995-2020



L. Brunner et al.: Reduced global warming from CMIP6 projections when weighting models 997

et al., 2020b), as the effect of the weighting typically weak-
ens when adding more diagnostics (Lorenz et al., 2018).

ClimWIP has already been used to create estimates of
regional change and related uncertainties for a range of
different variables such as Arctic sea ice (Knutti et al.,
2017b), Antarctic ozone concentrations (Amos et al., 2020),
North American maximum temperature (Lorenz et al., 2018),
and European temperature and precipitation (Brunner et al.,
2019; Merrifield et al., 2020). Recently, Liang et al. (2020)
used an adaptation of the method to constrain changes in
global temperature using the global mean temperature trend
as the single diagnostic for both the performance and in-
dependence weighting. Here, we focus on investigating the
ClimWIP method’s performance in weighting global mean
temperature changes when informed by a range of diagnos-
tics. To assess the robustness of these choices, we perform an
out-of-sample perfect model test using CMIP5 and CMIP6
as pseudo-observations. Based on these results, we select a
combination of diagnostics that capture not only a model’s
transient warming but also its ability to reproduce historical
patterns in climatology and variability fields; this is done in
order to increase the robustness of the weighting scheme and
minimize the risk of skill decreases due to the weighting.
This approach is particularly important for users interested
in the “worst case” rather than in mean changes. We also
look into the interdependencies among the models, show-
ing the ability of our diagnostics in clustering models with
known shared components using a “family tree” (Masson and
Knutti, 2011; Knutti et al., 2013), and we further show the
skill of the independence weighting to account for this. We
then calculate combined performance–independence weights
based on two reanalysis products in order to also account for
the uncertainty in the observational record. Finally, we apply
these weights to provide constrained distributions of future
warming and TCR.

2 Data and methods

2.1 Model data

The analysis is based on all currently available CMIP6 mod-
els that provide surface air temperature (tas) and sea level
pressure (psl) for the historical, SSP1-2.6, and SSP5-8.5 ex-
periments. We use all available ensemble members, which re-
sults in a total of 129 runs from 33 models (see Table S4 for a
full list including references). We use models post-processed
within the ETH Zurich CMIP6 next generation archive,
which provides additional quality checks and re-grids mod-
els onto a common 2.5◦× 2.5◦ latitude–longitude grid, us-
ing second-order conservative remapping (see Brunner et al.,
2020a, for details). In addition, we use one member of all
CMIP5 models providing the same variables and the cor-
responding experiments (historical, RCP2.6, and RCP8.5),
which results in a total of 27 models (see Table S5 for a full
list).

2.2 Reanalysis data

To represent historical observations in tas and psl, we use
two reanalysis products: ERA5 (C3S, 2017) and MERRA-2
(GMAO, 2015a,b; Gelaro et al., 2017). Both products are re-
gridded to a 2.5◦×2.5◦ latitude–longitude grid using second-
order conservative remapping and are evaluated in the pe-
riod from 1980 to 2014. We use a combination of these
two observational datasets following the results of Lorenz
et al. (2018) and Brunner et al. (2019), who show that us-
ing individual datasets separately can lead to diverging re-
sults in some cases. It has been argued that combining mul-
tiple datasets (e.g., by using their full range or their mean)
yields more stable results (Gleckler et al., 2008; Brunner
et al., 2019). Here, we use the mean of ERA5 and MERRA-
2 at each grid point as reference equivalent to Brunner et al.
(2019). Finally, we also compare our results to globally aver-
aged merged temperatures from the Berkeley Earth Surface
Temperature (BEST) dataset (Cowtan, 2019).

2.3 Model weighting scheme

We use an updated version of the ClimWIP method described
in Brunner et al. (2019) and Merrifield et al. (2020), which is
based on earlier work by Lorenz et al. (2018), Knutti et al.
(2017b), and Sanderson et al. (2015b,a); it can be down-
loaded at https://github.com/lukasbrunner/ClimWIP.git (last
access: 8 October 2020). It assigns a weight wi to each
model mi that accounts for both model performance and in-
dependence:

wi =
e
−

(
Di
σD

)2

1+
M∑
j 6=i

e
−

(
Sij
σS

)2 , (1)

where Di and Sij are the generalized distances of model mi
to the observations and to model mj , respectively. The shape
parameters σD and σS set the strength of the weighting, effec-
tively determining the point at which a model is considered
to be “close” to the observations or to another model (see
Sect. 2.5).

This updated version of ClimWIP assigns the same weight
to each initial-condition ensemble member of a model, which
is adjusted by the number of ensemble members (see Merri-
field et al., 2020, for a detailed discussion). To illustrate this
additional step in the weighting method, consider a single
performance diagnostic d . d is calculated for each model and
ensemble member separately; hence, d = dki , where i repre-
sents individual models and k runs over all ensemble mem-
bers Ki of model mi (from 1 to 50 members in CMIP6). For
each model mi , the mean diagnostic d ′i is

d ′i =

K∑
k

dki

Ki
. (2)
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d ′i is then used to calculate the generalized distance Di and
further the performance weight wi via Eq. (1). A detailed de-
scription of this processing chain can be found in Sect. S2.
An analogous process is used for distances between models.
This setup allows for a consistent comparison of model fields
to one another and to observations in the presence of internal
variability and, in particular, also enables the use of variance-
based diagnostics. In addition, it ensures a consistent esti-
mate of the performance shape parameter σD in the calibra-
tion (see Sect. 2.5), based on the average weight per model;
in previous work, in contrast, the calibration was based on
only one ensemble member per model.

2.4 Weighting target and diagnostics

We apply the weighting to projections of the annual-mean
global-mean temperature change from two SSPs, represent-
ing weak (SSP1-2.6) and strong (SSP5-8.5) climate change
scenarios. Changes in two 20-year target periods represent-
ing mid-century (2041–2060) and end-of-century (2081–
2100) conditions are compared to a 1995–2014 baseline. In
addition, we weight TCR values obtained from an update of
the dataset described in Tokarska et al. (2020). The weights
are calculated from global, horizontally resolved diagnostics
based on annual mean data in the 35-year period from 1980
to 2014. We use different diagnostics for the calculation of
the independence and performance parts of the weighting, as
proposed in Merrifield et al. (2020).

The goal of the independence weighting is to identify
structural similarities between models (such as shared off-
sets or similar spatial patterns) which are interpreted to be
indications of interdependence arising from factors such as
shared components or parameterizations. In the past, com-
binations of horizontally resolved regional temperature, pre-
cipitation, and sea level pressure fields have typically been
used (e.g., Knutti et al., 2013; Sanderson et al., 2017; Boé,
2018; Lorenz et al., 2018; Brunner et al., 2019). Building
on the work of Merrifield et al. (2020), we use a com-
bination of two global, climatology-based diagnostics, the
spatial pattern of climatological temperature (tasCLIM) and
sea level pressure (pslCLIM), as similar diagnostics were
found to work well for clustering CMIP5-generation mod-
els known to be similar. Beside our approach, several other
methods to tackle this issue of model dependence exist.
Among them are approaches that use other metrics to estab-
lish model independence (e.g., Pennell and Reichler, 2011;
Bishop and Abramowitz, 2013; Boé, 2018), approaches that
select a more independent subset of the original ensemble
(e.g., Leduc et al., 2016; Herger et al., 2018a), or even ap-
proaches that treat model similarity as an indication of ro-
bustness and give models that are closer to the multi-model
mean more weight (e.g., Giorgi and Mearns, 2002; Tegegne
et al., 2019). Neither of these definitions of independence
hold in a strictly statistical sense (Annan and Hargreaves,
2017), but we still stress that it is important to account for dif-

ferent degrees of model interdependence as well as possible
when developing probabilistic estimates from an “ensemble
of opportunity” such as CMIP6. Additional discussion about
our method for calculating model independence in the con-
text of other approaches can be found in Sect. S4.

The performance weighting, in turn, allocates more weight
to models that better represent the observed behavior of the
climate system as measured by the diagnostics while down-
weighting models with large discrepancies from the observa-
tions. We use multiple diagnostics to limit overconfidence in
cases where a model fits the observations well in one diag-
nostic by chance while being far away from them in several
others. For example, we want to avoid giving heavy weight
to a model based solely on its representation of the tem-
perature trend if its year-to-year variability differs strongly
from the observed year-to-year variability. The performance
weights are based on five global, horizontally resolved di-
agnostics: temperature anomaly (tasANOM; calculated from
tasCLIM by removing the global mean), temperature vari-
ability (tasSTD), sea level pressure anomaly (pslANOM),
sea level pressure variability (pslSTD), and the temperature
trend (tasTREND). A detailed description of the diagnostic
calculation can be found in Sect. S2. We use anomalies in-
stead of climatologies in the performance weight in order
to avoid punishing models for absolute bias in global-mean
temperature and pressure, because these are not correlated
with projected warming (Flato et al., 2013; Giorgi and Cop-
pola, 2010). This can be different for regional cases, where,
for example, absolute temperature biases have been shown
to be important for constraining projections of the Arctic sea
ice extent (Knutti et al., 2017b) or European summer temper-
atures (Selten et al., 2020).

One aim of our study is to find an optimal combination of
diagnostics that successfully constrains projections for our
target quantity (global temperature change) while avoiding
overconfidence or susceptibility to uncertainty from inter-
nal variability. For example, tasTREND is a powerful diag-
nostic due to its clear physical relationship and high cor-
relation with projected warming (e.g., Nijsse et al., 2020;
Tokarska et al., 2020). However, while it has the highest
correlation with the target of all investigated diagnostics,
it also has the largest uncertainty due to internal variabil-
ity (i.e., the spread of tasTREND across ensemble mem-
bers of the same model). Ideally, a performance weight is
reflective of underlying model properties and does not de-
pend on which ensemble member is chosen to represent
that model. tasTREND does not fulfill this requirement:
the spread within one model is the same order of magni-
tude as the spread among different models. To find a com-
promise, we divide our diagnostics into two groups: trend-
based diagnostics (tasTREND) and non-trend-based diag-
nostics (tasANOM, tasSTD, pslANOM, and pslSTD). Dif-
ferent combinations of these two groups (ranging from only
non-trend-based diagnostics to only tasTREND) are evalu-
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ated in Sect. 3.1, and the best performing combination is se-
lected for the remainder of the study.

2.5 Estimation of the shape parameters

The shape parameters σD and σS are two constants that de-
termine the width of the Gaussian weighting functions for all
models. As such, they are responsible for translating the gen-
eralized distances into weights. Regarding the performance
weighting, small values of σD lead to aggressive weighting,
with a few models receiving all the weight, whereas large
values lead to more equal weighting. It is important to note
that, while σD sets this “strength” of the weighting, the rank
of a model (i.e., where it lies on the scale from best to worst)
is purely based on its generalized distance to the observa-
tions. To estimate a performance shape parameter σD that
weights models based on their historical performance with-
out being overconfident, we use a calibration approach based
on the perfect model test in Knutti et al. (2017b) and de-
tailed in Sect. S3. In short, the calibration selects the small-
est σD value (hence, the strongest weighting) for which 80 %
of “perfect models” fall within the 10–90 percentile range of
the weighted distribution in the target period. Smaller σD val-
ues lead to less models fulfilling this criterion and, hence, to
overly narrow, overconfident projections. Note that methods
that simply maximize the correlation of the weighted mean to
the target often tend to pick small values of σD that result in
projections that are overconfident in the sense that the uncer-
tainty ranges are too small (Knutti et al., 2017b). A similar
issue arises for methods that estimate σD based only on his-
torical information, as better performance in the base state
does not necessarily lead to a more skilled representation of
the future – for example, if the chosen diagnostics are not
relevant for the target (Sanderson and Wehner, 2017).

The independence weighting has a subtle but fundamen-
tally different dependence on its shape parameter σS: small
values lead to equal weighting, as all models are considered
to be independent, but so do large values, as all models are
considered to be dependent. Hence, the effect of the indepen-
dence weighting is strongest if the shape parameter is chosen
such that it identifies clusters of models as similar (down-
weighting them) while still correctly identifying models that
are far from each other as independent (hence, giving them
relatively more weight). For a detailed discussion including
SMILEs, see Merrifield et al. (2020). To estimate σS, we use
the information from models with more than one ensemble
member. Simply put, we know that initial-condition ensem-
ble members are copies of the same model that differ only
due to internal variability; therefore, we have some infor-
mation about the distances that must be considered “close”
by σS. The method for calculating σS is described in detail
in Sect. 3 of the Supplement of Brunner et al. (2019). Here,
we arrive at a value of σS = 0.54, which we use throughout
the paper. It is worth noting that σS is based only on his-
torical model information; therefore, it is independent of ob-

servations or the selected target period and scenario. Addi-
tional discussion of the selected σS value in the context of
the multi-model ensemble used in this study can be found in
the Sect. S5.

2.6 Validation of the performance weighting

To investigate the skill of ClimWIP in weighting CMIP6
global mean temperature change and the effect of the dif-
ferent diagnostic combinations, we apply a perfect model
test (Abramowitz and Bishop, 2015; Boé and Terray, 2015;
Sanderson et al., 2017; Knutti et al., 2017b; Herger et al.,
2018a,b; Abramowitz et al., 2019). As a skill measure, we
use the continuous ranked probability skill score (CRPSS),
a measure of the ensemble forecast quality, defined as the
relative error between the distribution of weighted models
and a reference (Hersbach, 2000). Here, we use the relative
CRPSS change between the unweighted and weighted cases
(in percent), with positive values indicating a skill increase.
The CRPSS is calculated separately for both SSPs and future
time periods, as we expect to find different skill for different
projected climate states.

The first perfect model test only focuses on the relative
skill differences when applying performance weights based
on different combinations of diagnostics (results are pre-
sented in Sect. 3.1). We explain its implementation based
on an example perfect model mj with only one ensemble
member for simplicity here: (i) the model mj is taken as
a pseudo-observation and removed from the CMIP6 MME;
(ii) the output from mj during the historical diagnostic pe-
riod (1980–2014) is used to calculate the performance diag-
nostics for the remaining models (d ′i 6=j ); (iii) the generalized
model–“observation” distances (Di 6=j ) and the performance
weights (wi 6=j ) are calculated and applied to the MME (ex-
cluding mj ); (iv) the CRPSS is calculated in the target peri-
ods using the future projections of mj as reference. This is
done iteratively, using each model in CMIP6 MME in turn
as a pseudo-observation. For perfect models with more than
one ensemble member (mkj ), all members are removed from
the ensemble in (i), d ′i 6=j is calculated for each member sep-
arately in (ii) and then averaged, and the CRPSS is also cal-
culated for each ensemble member in (iv) and averaged.

This approach is structurally similar to the one used to cal-
ibrate the performance shape parameter σD as an integral part
of ClimWIP (described in Sect. 2.5). However, the metric and
aim of this perfect model test are quite different. It is used
to show the potential for a skill increase through the perfor-
mance weighting as well as the risk of a decrease based on
the selected σD and to establish the most skillful combination
of diagnostics.

The second perfect model test (Sect. 3.2) is conceptually
similar, but pseudo-observations are now drawn from CMIP5
instead of CMIP6. This test has the advantage that the per-
fect models have not been used to estimate σD and can be
considered independent. However, one might also argue that
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the CMIP5 pseudo-observations are not fully out-of-sample,
as several CMIP6 models are related to CMIP5 models and
might be structurally similar to their predecessors, which was
the case for the CMIP5 and CMIP3 generations (Knutti et al.,
2013). However, there are also considerable differences be-
tween CMIP5 and CMIP6 that arise from many years of ad-
ditional model development, a longer observational record
to calibrate to, and differing spatial resolutions. In addition,
the emission scenarios that force CMIP5 and CMIP6 in the
future (RCPs and SSPs, respectively) result in slightly dif-
ferent radiative forcings (Forster et al., 2020), and several
CMIP6 models have been shown to lead to considerably
more warming than most CMIP5 models. We do not discuss
these similarities and differences between the model genera-
tions in detail here; instead, we simply use CMIP5 as a source
of pseudo-observations to evaluate the skill of ClimWIP in
weighting the CMIP6 MME. To avoid cases with the highest
potential for remaining dependence between generations, we
exclude CMIP6 models that are direct predecessors of the
respective CMIP5 model used as pseudo-observations (see
Table S5 for a list).

2.7 Validation of the independence weighting

To validate that the information in the diagnostics chosen
for the independence weighting (tasCLIM and pslCLIM) can
identify models known to be similar, we use a hierarchi-
cal clustering approach based on Müllner (2011) and imple-
mented in the Python SciPy package (https://www.scipy.org/,
v1.5.2). We use the linkage function with the average method
applied to the horizontally resolved distance fields between
each pair of models (see Sect. S6 for more details). This ap-
proach is conceptually similar to the work of Masson and
Knutti (2011) and Knutti et al. (2013) and follows their ex-
ample of showing similarity as model “family trees”. The hi-
erarchical clustering is not used in the model weighting itself;
we use it here only to show that qualitative information about
model similarity can be inferred from model output using the
two chosen diagnostics and to compare it to the results from
the independence weighting.

The independence weighting (denominator in Eq. 1) quan-
tifies the similarity information extracted from the pairwise
distance fields via the independence shape parameter (σS; see
Sect. 2.5). The independence weighting estimates where two
models fall on the spectrum from completely independent to
completely redundant and weights them accordingly. In or-
der to test this approach, we successively add artificial “new”
models into the CMIP6 MME: for an example model with
two members (m1

j and m2
j ), we remove the first member and

add it as an additional model (mM+1). In an idealized case,
where all models are perfectly independent of one another
and all ensemble members of a model are identical, we would
expect the weight of the member that remains (m2

j ) to go
down by a factor of 1/2, while the weight of all other models
would stay the same. However, in a real MME, where there

is internal variability and complex model interdependencies
exist, we would not necessarily expect such simple behavior;
several other models might also be (rightfully) affected by
adding such a duplicate, and the effect on the m2

j would be
smaller (see Sect. 4.2)

3 Evaluation of the weighting in the perfect model
test

3.1 Leave-one-out perfect model test with CMIP6

We start by calculating the performance weights in the diag-
nostic period (1980–2014) in a pure model world and without
using the independence weighting. In this first step, we focus
on relative skill differences when using different combina-
tions of diagnostics. Figure 1 shows the distribution of the
CRPSS (with positive values indicating an increase in projec-
tion skill due to the weighting and vice versa; see Sect. 2.6)
evaluated for the mid- and end-of-century target periods,
the two SSPs, and for different combinations of diagnostics.
The diagnostics range from only non-trend-based diagnostics
(0 % tasTREND+ 25 % tasANOM+ 25 % tasSTD+ 25%
pslANOM+ 25 % pslSTD= 100 %) to only trend-based di-
agnostics (100 % tasTREND). Overall, all diagnostic com-
binations tend to increase median skill compared with the
unweighted projections, but there is a considerable range of
CRPSS values and they can be negative. In evaluating the
different cases, we consequently focus on two important as-
pects of the CRPSS distribution: (i) the median, as a best esti-
mate of the expected relative skill change, and (ii) the 5th and
25th percentiles, in particular if they are negative. Negative
CRPSS values indicate a worsening of the projections com-
pared with the unweighted case. As the goal of the weight-
ing is to improve the projections based on the performance
and dependence of the models, the risk of negative CRPSSs
should be minimized.

We find the σD values to be correctly calibrated by the
method in order to limit the risk of a strong skill decrease
(the CRPSS is close to zero or positive for the 25th percentile
in almost all cases). For the mid-century period, the median
skill increases by up to 25 % depending on the SSP and the
combination of diagnostics. The magnitude of potential neg-
ative CRPSSs in a “worst-case” scenario (5th percentile),
however, is better constrained using a balanced combination
of diagnostics (e.g., 50 % tasTREND). In the end-of-century
period, the median skill is more variable (mainly due to the
selected performance shape parameters σD; see Table S1 in
the Supplement), with combinations that include both trend
and non-trend diagnostics again performing best.

Using 50 % tasTREND and 50 % anomaly- and variance-
based diagnostics (about 13 % tasANOM, 13 % tasSTD,
13 % pslANOM, and 13 % pslSTD) optimizes the combina-
tion of median CRPSS increases and the avoidance of possi-
ble negative CRPSSs; therefore, we use this combination to
calculate the weights for the rest of the analysis. Note that the
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Figure 1. Continuous ranked probability skill score (CRPSS) relative to the unweighted ensemble for the performance weighting based on
a leave-one-out perfect model test with CMIP6 for (a) mid-century and (b) end-of-century temperature change relative to 1995–2014. The
x axis shows different combinations of the two diagnostic groups ranging from only non-trend-based diagnostics (0 % tasTREND) to only
trend-based diagnostics (100 % tasTREND). The values not summing to 100 % is due to rounding in the labels only.

two SSPs and time periods have slightly different σD values
(ranging from 0.35 to 0.58; Table S1), leading to slightly dif-
fering weights even though the historical information is the
same. This arises from differences in confidence when apply-
ing the method for different targets. However, as the σD val-
ues are found to be so similar, we use the mean value from
the two SSPs and time periods in the following for simplic-
ity; hence, σD = 0.43. This does not have a strong influence
on the results, but it simplifies their presentation and inter-
pretation.

3.2 Perfect model test using CMIP5 as
pseudo-observations

We now use each of the 27 CMIP5 models in turn as a
pseudo-observation and include both the performance and in-
dependence parts of the method. For all considerations in this
section, we use the CMIP5 merged historical and RCP runs
corresponding to the CMIP6 historical and SSP runs, i.e.,
RCP2.6 to SSP1-2.6 and RCP8.5 to SSP5-8.5. This allows
for an evaluation of the skill of the full weighting method ap-
plied to the CMIP6 MME in the future. Figure 2 shows two
cases selected to lead to the largest decrease (Fig. 2a) and
increase (Fig. 2b) in the CRPSS for SSP5-8.5 in the end-of-
century period when applying the weights. This reveals an
important feature of constraining methods in general: there
is a risk that the information from the historical period might
not lead to a skill increase in the future. In the case shown
in Fig. 2a, weighting based on pseudo-observations from
MIROC-ESM shifts the distribution downwards, whereas
projections from MIROC-ESM end up warming more than
the unweighted mean in the future. This reflects the possi-
bility that information drawn from real historical observa-
tions might not lead to an increase in projection skill in some

cases. Here, cases of decreasing skill appear for about 15 %
of pseudo-observations.

The largest skill increases, in turn, often come from
pseudo-observations rather far away from the unweighted
mean. It seems that if the pseudo-observations behave very
differently from the model ensemble in the historical period,
there is a good chance that they will continue to do so in the
future. One explanation for this could be a systematic differ-
ence between the models in the ensemble and the pseudo-
observation due to factors such as a missing feedback or
component. Thus, an important cautionary takeaway is to not
only maximize the mean skill increase when setting up the
method, as the cases with the highest skill might come from
rather “unrealistic” pseudo-observations (i.e., those on the
tails of the model distribution). This is illustrated in Fig. S5
(e.g., using the CMIP5 GFDL or GISS models as pseudo-
observations). However, in many cases, we do not necessarily
expect the real climate to follow such an extreme trajectory
but rather to be closer to the unweighted MME mean (in part
because real observations tend to be used in model devel-
opment and tuning). Therefore, it is important to use a bal-
anced set of multiple diagnostics and not only to optimize for
maximal correlation when choosing σD, which might make
the highest possible skill increases unattainable, but – maybe
more importantly – to guard against even more substantial
skill decreases.

Finally, it is important to note that the skill of the weight-
ing for a given pseudo-observation also depends on the tar-
get. In isolated cases this can mean that the weighting leads to
an increase in skill for one SSP while it leads to a decrease in
the other (e.g., IPSL-CM5A-LR as pseudo-observation) or to
an increase in one time period and to a decrease in the other
(e.g., CSIRO-Mk3-6-0). An overview of the weighting based
on each of the 27 CMIP5 models can be found in Fig. S5.
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Figure 2. Time series of temperature change (relative to 1995–2014) for the unweighted (gray) and weighted (colored) CMIP6 mean (lines)
and likely (66 %) range (shading) as well as the CMIP5 models serving as pseudo-observations (dashed lines). Shown are the cases that lead
to (a) the largest decrease in skill (CMIP5 pseudo-observation: MIROC-ESM) and (b) to the largest increase (MPI-ESM-LR) for SSP5-8.5
in the end-of-century target period. Note that no inference on the performance of the CMIP5 models can be drawn from this figure. The
diagnostic period refers to the 1980–2014 period, which informs the weights; the target periods refer to 2041–2060 and 2081–2100.

Figure 3. (a) Similar to Fig. 1 but using 27 CMIP5 models as pseudo-observations and showing only the 50 % tasTREND case. (b) Map of
the median of the CRPSS relative to the unweighted ensemble for 2041–2060 under SSP5-8.5.

To look into the skill change more quantitatively, Fig. 3a
shows the skill distribution of weighting CMIP6 to predict
each of the pseudo-observations drawn from CMIP5 for both
target time periods and scenarios. We note again that for
each CMIP5 pseudo-observation, the directly related CMIP6
models are excluded (see Table S5 for a list). Compared with
the leave-one-out perfect model test with CMIP6 shown in
Fig. 1, the increase in median CRPSS is lower and the risk
of negative CRPSSs is slightly higher. This is not unexpected
for a test sample that is structurally different from CMIP6 in
several aspects (such as the forcing scheme and maximum
amount of warming). However, the setup still achieves a me-
dian CRPSS increase of about 12 % to 22 %, with the risk of
a skill reduction being confined to about 15 % of cases and to
a maximum decrease of about 25 %. This clearly shows that
ClimWIP can be used to provide reliable estimates of future

global temperature change and related uncertainties from the
CMIP6 MME.

Finally, we consider the question of whether there are re-
gional patterns in the skill change by investigating a map
of median CRPSSs for SSP5-8.5 in the mid-century pe-
riod in Fig. 3b (see Fig. S6 for the other cases). Note that
each CMIP6 model is still assigned only one weight, but the
CRPSS is calculated at each respective grid point. The skill
increases almost everywhere with the Northern Hemisphere
having a slightly higher amplitude. A notable exception is the
North Atlantic, where weighting leads to a slight decrease in
the median skill. Indeed, this is the only region where the
unweighted CMIP6 mean underestimates the warming from
CMIP5. Weighting the CMIP6 ensemble leads to a slight
strengthening of the underestimation in this region, whereas
it reduces the difference almost everywhere else.
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Figure 4. Combined independence–performance weights for each CMIP6 model (line with dots) as well as pure performance weights
(squares) and pure independence weights (triangles). All three cases are individually normalized, and the equal weighting each model would
receive in a normal arithmetic mean is shown for reference (dashed line). The labels are colored by each model’s TCR value: > 2.5 ◦C –
red, > 2 ◦C – yellow, > 1.5 ◦C – green, and ≤ 1.5 ◦C – blue. The number of ensemble members per model is shown in parentheses after the
model name.

In summary, weighting CMIP6 in a perfect model test us-
ing five different diagnostics to establish model performance
and two diagnostics for independence shows a clear increase
in median skill compared with the unweighted distribution
consistent over both investigated scenarios and time peri-
ods. Looking into the geographical distribution reveals an in-
crease in skill almost everywhere, with some decreases found
in the Southern Ocean, particularly in SSP1-2.6 (Fig. S6).
Importantly, skill increases almost everywhere over land,
thereby benefiting assessments of climate impacts and adap-
tation where people are affected most directly.

4 Weighting CMIP6 projections of future warming
based on observations

So far we have selected a combination of diagnostics that
leads to the highest increase in median skill while minimiz-
ing the risk of a skill decrease based on an out-of-sample
perfect model test with CMIP6 in Sect. 3.1. We also ar-
gued that we use the same shape parameters (which deter-
mine the strength of the weighting) for all cases, namely
σS = 0.54 for independence and σD = 0.43 for performance.
In Sect. 3.2, we then evaluated this setup using 27 pseudo-
observations drawn from the CMIP5 MME. In this section,
we now calculate weights for CMIP6 based on observed cli-
mate and validate the effect of the independence weighting.
We use observational surface air temperature and sea level
pressure estimates from the ERA5 and MERRA-2 reanal-

yses to calculate the performance diagnostics (tasANOM,
tasSTD, tasTREND, pslANOM, and pslSTD). We continue
to use model–model distances in tasCLIM and pslCLIM as
independence diagnostics.

4.1 Calculation of weights for CMIP6

Figure 4 shows the combined performance and independence
weights assigned to each CMIP6 model by ClimWIP when
applied to the target of global temperature change. In addi-
tion, the individual performance and independence weights
are also shown. All three cases are individually normalized.
Applying the combined weight, about half of the models
receive more weight than in a simple arithmetic mean and
about half receive less. The best performing model, GFDL-
ESM4, has about 4 times more influence than it would
have without weighting (about 0.13 compared with 0.03 in
the case with equal weighting). The three worst performing
models, MIROC-ES2L, CanESM5, and HadGEM3-GC31-
LL, in turn, receive less than 1/20 of the equal weighting
(about 0.001).

Indeed, several recent studies have found that models
which show more future warming per unit of greenhouse
gas are less likely based on comparison with past observa-
tions (e.g., Jiménez-de-la Cuesta and Mauritsen, 2019; Nijsse
et al., 2020; Tokarska et al., 2020). Consistent with their find-
ings, models with high TCR receive very low performance
(and combined) weights (label colors in Fig. 4). Among the
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five lowest ranking models, four have a TCR above 2.5 ◦C,
and all models with a TCR above 2.5 ◦C receive less then
equal weight. The eight highest ranking models, in turn, have
TCR values ranging from 1.5 to 2.5 ◦C; therefore, the lie in
the middle of the CMIP6 TCR range. See Table S2 for a sum-
mary of all model weights and TCR values.

In addition to the combined weighting, Fig. 4 also shows
the independence and performance weights separately. We
discuss model independence in more detail in the next sec-
tion. For the model performance weighting, the relative dif-
ference from the combined weighting (i.e., the influence of
the independence weighting) is mostly below 50 %, with the
MIROC model family being one notable exception. Both
MIROC models are very independent, which shifts MIROC6
from a below-average model (based on the pure performance
weight; square in Fig. 4) to an above-average model in the
combined weight (dot in Fig. 4), effectively more than dou-
bling its performance weight. For MIROC-ES2L the scaling
due to independence is similarly high, but its total weight is
still dominated by the very low performance weight. In the
next section, we investigate if these independence weights
indeed correctly represent the complex model interdepen-
dencies in the CMIP6 MME and appropriately down-weight
models that are highly dependent on other models.

4.2 Validation of the independence weighting

Focusing on the independence weights in Fig. 4, one can
broadly distinguish three cases: (i) relatively independent
models, (ii) clusters of models that are quite dependent, and
(iii) models for which the independence weighting does not
really influence the weighting. To visualize and discuss these
cases somewhat quantitatively, we show a CMIP6 model
family tree similar to the work by Masson and Knutti (2011)
and Knutti et al. (2013).

Using the same two diagnostics, namely horizontally re-
solved global temperature and sea level pressure climatolo-
gies (from 1980 to 2014), we apply a hierarchical cluster-
ing approach (Sect. 2.7). Figure 5 shows the resulting family
tree of CMIP6 models similar to the work by Masson and
Knutti (2011) and Knutti et al. (2013). In this tree, models
that are closely related branch further to the left, whereas
very independent model clusters branch further to the right.
The mean generalized distance between two initial-condition
members of the same model is used as an estimation of the
internal variability and is indicated using gray shading. Mod-
els that have a distance similar to this value (e.g., the two
CanESM5 model versions) are basically indistinguishable.
The independence shape parameter used through the paper
(σS = 0.54) is shown as dashed vertical line.

A comprehensive investigation of the complex interdepen-
dencies within the multi-model ensemble in use and further
between models from the same institution or of similar ori-
gin is beyond the scope of this study and will be the sub-
ject of future work. Here, we limit ourselves to pointing out

Figure 5. Model family tree for all 33 CMIP6 models used in this
study, similar to Knutti et al. (2013). Models branching further to
the left are more dependent, and models branching further to the
right are more independent. The analysis is based on global, hori-
zontally resolved tasCLIM and pslCLIM in the period from 1980 to
2014. The independence shape parameter σS is indicated as dashed
vertical line, and an estimation of internal variability is given using
gray shading. Labels with the same color indicate models with ob-
vious dependencies, such as shared components or the same origin,
whereas models with no clear dependencies are labeled in black.

several base features of the output-based clustering, which
serve as indications that it is skillful with respect to identi-
fying interdependent models. The labels of models with the
same origin or with known shared components are marked
in the same color in Fig. 5. These two factors are the most
objective measure for a priori model dependence that we
have. The information about the model components is taken
from each model’s description page on the ES-DOC explorer
(https://es-doc.org/cmip6/, last access: 17 April 2020), as
listed in Table S4.

Figure 5 clearly shows that clustering models based on
the selected diagnostics performs well: models with shared
components or with the same origin (indicated by the same
color) are always grouped together. Examining this in more
detail, we find, for example, that closely related models such
as low- and high-resolution versions (MPI-ESM-2-LR and
MPI-ESM-2-HR; CNRM-CM6-1 and CNRM-CM6-1-HR)
or versions with only one differing component (CESM2 and
CESM2-WACCM; INM-CM5-0 and INM-CM4-8; both dif-
fering only in the atmosphere) are detected as being very sim-
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ilar. Both MIROC models, which have been identified as very
independent based on Fig. 4, in turn, are found to be very far
away from each other and even further away from all of the
other models in the CMIP6 MME.

To investigate if the independence weighting correctly
translates model distance into weights, we now look at two
models as examples: one that performs well and is relatively
independent (MIROC6) and another that also performs well
but is more dependent (MPI-ESM1-2-HR). Each has multi-
ple ensemble members; we remove one member from each
and add it to the MME as an additional model, as detailed in
Sect. 2.7.

In the first case (Fig. 6a; MIROC6 which is among the
least dependent models), the original weight is reduced by al-
most half, which is close to what we would expect in the ide-
alized case. All other models are unaffected by the addition
of a duplicate of MIROC6, even the other model from the
same center – MIROC-ES2L, which differs in atmospheric
resolution and cumulus treatment (Tatebe et al., 2019; Ha-
jima et al., 2020). Based on the “family tree” shown in Fig. 5
this behavior is not surprising: the two MIROC models are
not only identified as the most independent models in the
CMIP6 MME, but they are also identified as being very inde-
pendent of one another. While some of the components and
parameterizations are similar, updates to parameterizations
and to the tuning of the parameters appear to be sufficient
here to create a model that behaves quite differently.

The second case (Fig. 6b; MPI-ESM1-2-HR which is
among the most dependent models) shows a very differ-
ent picture. The strongest effect on the original weight is
found for the copied model itself, which is reduced by about
20 %, but several other models are also affected. Looking
into these models in more detail, we conclude that the in-
terdependencies detected by our method can be traced to
shared components in most cases: MPI-ESM1-2-LR is just
the low-resolution version of MPI-ESM1-2-HR (run with a
T63 atmosphere instead of T127 and a 1.5◦ ocean instead
of 0.4◦), AWI-CM-1-1-MR and NESM3 share the atmo-
spheric component (ECHAM6.3) and have similar land (JS-
BACH3.x) components, and CAMS-CSM1-0 shares a sim-
ilar atmospheric (ECHAM5) component. MRI-ESM2-0, in
contrast, does not have any obvious dependencies. Informa-
tion about the models can be found in their reference publi-
cations (Mauritsen et al., 2019; Gutjahr et al., 2019; Semmler
et al., 2019; Yang et al., 2020; Chen et al., 2019; Yukimoto
et al., 2019) and on the ES-DOC explorer, which provides de-
tailed information about all of the models used in this study.
The links to each model’s information page can be found in
Table S4.

4.3 Applying weights to CMIP6 temperature projections
and TCR

Figure 7 shows a time series of unweighted and weighted
projections based on a weak (SSP1-2.6) and strong (SSP5-

8.5) climate change scenario. For both scenarios a clear shift
in the mean towards less warming is visible, which is also re-
flected in the upper uncertainty bound. Notably, however, the
lower bound hardly changes, leading to a general reduction
in projection uncertainty. This becomes even clearer when in-
vestigating the two 20-year periods, reflecting mid- and end-
of-century conditions (Fig. 8a and Table S3).

Based on these results, warming exceeding 5 ◦C by the
end of the century is very unlikely even under the strongest
climate change scenario SSP5-8.5. The mean warming for
this case is shifted downward to about 3.7 ◦C, and the 66 %
(likely) and 90 % ranges are reduced by 13 % and 30 %, re-
spectively. For SSP1-2.6 in the end-of-century period as well
as both SSPs in the mid-century period, reductions in the
mean warming of 0.1 to 0.2◦ C are found. The likely range is
reduced by about 20 % to 35 % in these three cases. A sum-
mary of weights and warming values for all models as well as
all statistics can be found in Tables S2 and S3. Recent stud-
ies that use the historical temperature trend as an observa-
tional constraint for future warming (e.g., Nijsse et al., 2020;
Tokarska et al., 2020) lead to similar conclusions, with lower
constrained warming compared with unconstrained (both in
the mean and upper percentiles of the distributions).

To investigate the influence of remaining internal variabil-
ity in our combination of diagnostics on the weighting, we
also perform a bootstrap test. Selecting only one random
member per model (for models with more than one ensem-
ble member), we calculate weights and the corresponding
unweighted and weighted temperature change distributions.
This is repeated 100 times, providing uncertainty estimates
for both the unweighted and weighted percentiles. The mean
values of the weighted percentiles taken over all 100 boot-
strap samples are very similar to the values from the weight-
ing based on the full MME (including all ensemble members;
see Fig. S7), confirming the robustness of our approach.

We also apply weights to TCR estimates in Fig. 8b, finding
an unweighted mean TCR value of about 2 ◦C with a likely
range of 1.6 to 2.5 ◦C. Weighting by historical model per-
formance and independence constrains this to 1.9 ◦C (1.6 to
2.2 ◦C), which amounts to a reduction of 38 % in the likely
range. These values are consistent with recent studies based
on emergent constraints which estimate the likely range of
TCR to be 1.3 to 2.1 ◦C (Nijsse et al., 2020) and 1.2 to 2.0 ◦C
(Tokarska et al., 2020); they are also very similar to the range
of 1.5 to 2.2 ◦C from Sherwood et al. (2020), who combined
multiple lines of evidence. They are also consistent but sub-
stantially more narrow than the likely range from the Fifth
Assessment Report of the Intergovernmental Panel on Cli-
mate Change (IPCC) (IPCC, 2013) based on CMIP5: 1 to
2.5 ◦C. Figure 8b clearly shows that almost all models with
higher than equal weights lie within the likely range and only
one model lies above it (FIO-ESM-2-0). This is a strong in-
dication that TCR values beyond about 2.5 ◦C are unlikely
when weighting based on several diagnostics and when ac-
counting for model independence.
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Figure 6. Similar to Fig. 4 but removing one initial-condition ensemble member from (a) MIROC6 and (b) MPI-ESM1-2-HR and adding it as
a separate model when calculating the independence weights (the “new” model is not shown in the plot). Models with obvious dependencies
on the “new” model have bold labels (equivalent to Fig. 5). The change in the combined weight relative to the original weight is shown as
blue bars using the right axis.

5 Discussion and conclusions

We have used the climate model weighting by independence
and performance (ClimWIP) method to constrain projections
of future global temperature change from the CMIP6 multi-
model ensemble. Based on a leave-one-out perfect model
test, a combination of five global, horizontally resolved di-
agnostic fields (anomaly, variance, and trend of surface air
temperature, and anomaly and variance of sea level pres-
sure) was selected to inform the performance weighting. The
skill of weighting based on this selection was tested and con-
firmed in a second perfect model test using CMIP5 models as
pseudo-observations. Our results clearly show the usefulness
of this weighting approach in translating model spread into

reliable estimates of future changes and, in particular, into
uncertainties that are consistent with observations of present-
day climate and observed trends.

We also discussed the remaining risk of decreasing skill
compared with the raw distribution which is a crucial ques-
tion in all weighting or constraining methods. We show the
importance of using a balanced combination of climate sys-
tem features (i.e., diagnostics) relevant for the target to in-
form the weighting in order to minimize the risk of skill de-
creases. This guards against the possibility of a model “ac-
cidentally” fitting observations for a single diagnostic while
being far away from them in several others (and, hence, pos-
sibly not providing a skillful projection of the target vari-
able).
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Figure 7. Time series of temperature change (relative to 1995–2014) for the unweighted (gray) and weighted (colored) CMIP6 mean (lines)
and likely (66 %) range (shading). Three observational datasets are also shown in black; note that BEST is not used to inform the weighting
and is only shown for comparison here.

Figure 8. (a) Unweighted (gray) and weighted (colors) temperature change (relative to 1995–2014) for both periods and scenarios. (b) Un-
weighted (gray) and weighted (green) transient climate response (TCR). The dots show individual models as labeled, with the size of the dot
indicating the weight. The horizontal dot position is arbitrary.

By adding copies of existing models into the CMIP6
multi-model ensemble we verified the effect of the indepen-
dence weighting, showing that models get correctly down-
weighted based on an estimate of dependence derived from
their output. To inform the independence weighting, we used
two global, horizontally resolved fields (climatology of sur-

face air temperature and sea level pressure) which we showed
to allow a clear clustering of models with obvious interde-
pendencies using a CMIP6 “family tree”.

From these tests, we conclude that ClimWIP is skillful in
weighting global mean temperature change from CMIP6 us-
ing the selected setup. Hence, we use it to calculate weights
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for each CMIP6 model and apply them in order to obtain
probabilistic estimates of future changes. Compared with the
unweighted case, these results clearly show that the CMIP6
models that lead to the highest warming are less probable,
confirming earlier studies (e.g., Nijsse et al., 2020; Sherwood
et al., 2020; Tokarska et al., 2020). We find a weighted mean
global temperature change (relative to 1995–2014) of 3.7 ◦C
with a likely (66 %) range of 3.1 to 4.6 ◦C by the end of
the century when following SSP5-8.5. With ambitious cli-
mate mitigation (SSP1-2.6) a weighted mean change of 1 ◦C
(likely range from 0.7 to 1.4 ◦C) is projected for the same
period.

On the policy level, this highlights the need for quick
and decisive climate action to achieve the Paris climate tar-
gets. For climate modeling on the other hand, this approach
demonstrates the potential to narrow the uncertainties in
CMIP6 projections, particularly on the upper bound. The
large investments in climate model development have not
led to reduced model spread in the raw ensemble so far, but
the use of climatological information and emergent transient
constraints has the potential to provide more robust projec-
tions with reduced uncertainties, which are also more consis-
tent with observed trends, thereby maximizing the value of
climate model information for impacts and adaptation.
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