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Definition of temperature extremes
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Contents lists available at ScienceDirect

Index shorthand

Characteristic measured & timescales

Atmospheric Research
Index definition

TN10p
TN9Op
TX10p
TX90p
TXx
TNx
TXn

TAIn

JGR Atmospheres

RESEARCH ARTICLE
10.1029/20237D038906

Key Points:

o Extreme temperature events are
detected with Gaussian Mixture
Models to follow a multimodal rather
than a unimodal distribution

10-year temperature extremes will
oceur 13.6 times more frequently
under 3.0°C future warming

Colder days are getting warmer faster

.

RESEARCH LETTER
10.1029/2023GL103540

Key Points:

e The most intense heatwaves of
1950-2021 considerably change if
considering intensity indices either
based on cumulative or averaged
values

e _An appropriate measure of heatwave

Detecting Extreme Temperature Events Using Gaussian

Frequency; monthly & annual
Frequency; monthly & annual
Frequency; monthly & annual
Frequency; monthly & annual
Intensity; monthly & annual
Intensity; monthly & annual
Intensity; monthly & annual
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effects of ensemble size on their estimates

Increasing Intensity of Extreme Heatwaves: The Crucial Role

Occurrence of cold nights (daily minimum temperature) below ledrnaliiomepagsrwiNwislsevlercom/locate/atmos
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Occurrence of cold days (daily maximum temperature) below t| Invited review article

Occumrene of warm days ahove the 90th percentile. A review on the scientific understanding of heatwaves—Their
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VOLUME 34 JOURNAL OF CLIMATE 1 OCTOBER 2021
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The effect of a short observational record on the
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Extremes are often defined relative to the local
temperature distribution

Various approaches are used to define extremes. These are generally
based on the determination of relative (e.g., 90th percentile) or absolute
(e.g., 35°C for a hot day) thresholds. rcaueicin

7 universitat
. wien



Extremes are often defined relative to the local
temperature distribution

Various approaches are used to define extremes. These are generally
based on the determination of relative (e.g., 90th percentile) or absolute
(e.g., 35°C for a hot day) thresholds. rcaueicin

For percentile-based definitions the Expert Team on Climate Change
Detection and Indices (ETCCDI) recommends a threshold based on

o the 90th percentile relative to daily maximum temperature,
e the 30 year period 1961-1990, and
e 5 day running window across the seasonal cycle.
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Properties of relative extreme definitions

When defining relative extremes based on a 90th percentile
threshold we can expect on average 10% extreme frequency*
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When defining relative extremes based on a 90th percentile
threshold we can expect on average 10% extreme frequency*

e independent of the season
Since the th reShOId fOIIOWS the annual Cycle, Tank and Kénnen 2003; Fischer and Schar 2010; Hirsch et al. 2021
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Properties of relative extreme definitions

When defining relative extremes based on a 90th percentile
threshold we can expect on average 10% extreme frequency*

e independent of the season
Since the th reShOId fOIIOWS the annual Cycle, Tank and Kénnen 2003; Fischer and Schar 2010; Hirsch et al. 2021
e independent of the location
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since the threshold follows the spatial temperature distribution, zume s 2 scroeteretan 205

*in sample
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Properties of relative extreme definitions

When defining relative extremes based on a 90th percentile
threshold we can expect on average 10% extreme frequency*

e independent of the season
since the threshold follows the annual cycle, e o0 escher n sensr 2010 iscn et 20
e independent of the location
since the threshold follows the spatial temperature distribution, zume s 2 scroeteretan 205

e independent of the dataset
since the threshold provides an implicit bias correction. e s o schoeteretat 2015

*in sample
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Creation of a synthetic temperature time series

Daily maximum Temperature (TX) Synthetic temperature
5 —— 30 years

e white noise with
standard deviation 1K
e 30 years with 365 days
e lag 1 day autocorrelation: 0.8

Temperature (K)

—51

Following Zhang et al. 2005

1. Jan 1. Mar 1. May 1. ]ul 1. éep 1. Nov 31. Dec
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Creation of a synthetic temperature time series

Daily maximum Temperature (TX) Synthetic temperature
—— 30 years

e white noise with
standard deviation 1K
e 30 years with 365 days
e lag 1 day autocorrelation: 0.8

Temperature (K)

—51

Following Zhang et al. 2005

1. Jan 1. Mar 1. May 1. ]ul 1. éep 1. Nov 31. Dec

e sine with amplitude 3K
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Definition of relative temperature extremes

TX 90th percentil 5 day window ETCCDI threshold:

5 ] | ‘ | —— 30 years .
| e — Threshold e 90th percentile

e 30year
e 5day running window

Temperature (K)
o

—51

1. Jan 1. Mar 1. May 1. ]ul 1. éep 1. Nov 31. Dec
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Definition of relative temperature extremes

Exceedance 90th percentile 5 day window (TX90p5w)

Temperature (K)

—51

—— 30 years
—— Threshold
[ Extremes

O AP

1. Jan

1. Mar 1. May

1.]ul 1. éep

1.Nov  31.Dec
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ETCCDI threshold:

e 90th percentile
e 30year
e 5day running window
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Definition of relative temperature extremes

TX90p5w ETCCDI threshold:

5 —— 30 years .
3 —— Threshold e 90th percentile
o [ Extremes o 30 year
-] i
® 01 , ,
g e 5day running window
g

_5-

1. Jan 1. Mar 1. May 1. ]ul 1. éep 1. Nov 31. Dec
\_-’10 IIIIIII|I|rIIII | |Ir|| |IIIIII1H I|IIIIIIII|
g 2 | e reference frequency: 10%
[T
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Definition of relative temperature extremes

Temperature (K)

Freq. (%)

TX90p5w

—5 1

—— 30 years
—— Threshold
[ Extremes

1. Jan

1. Mar

1. May

1. ]ul 1. éep

1.Nov  31.Dec

10
5
0

Mean frequency: 9.9%

ETCCDI threshold:

e 90th percentile
e 30year
e 5day running window

repeat 5’000 times & average

__Lljan 1. Mar 1. May 1. Jul 1. Sep 1. Nov 31. Dec

X LI Y I P L L LT TR P TR LORLLE L PPY I 0 ) IR Y PR PRy T P

; __Lljan 1. Mar 1. May 1. Jul 1. Sep 1. Nov 31. Dec
@ M T T T o el ML AT T LT Ta T

wud sual T
1. Nov 31. Dec
T

1. Sep.
T a0 el MG T T LT T O
1. May 1. Jul 1. Sep

LL'TIPI % S PR PO 7Y | QPR §
1.Jan 1. Mar

X T
s ; __ljan 1. Mar 1. May 1. Jul
o

wud sual T
1. Nov 31. Dec
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Many studies do not follow the ETCCDI recommendation

and use longer running window sizes

TX90p5w

—— 30 years
—— Threshold
[ Extremes

Temperature (K)

—5 1

1. Jan 1. Mar 1. May 1. ]ul 1. éep 1. Nov

31. Dec

Given the relatively short historical period used, daily
percentile values can fluctuate up and down
somewhat from one day to the next, an undesired
result of sampling variability rather than changes in
seasonally varying climate. o
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ETCCDI threshold:

e 90th percentile
e 30year
e 5day running window
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Many studies do not follow the ETCCDI recommendation
and use longer running window sizes

TX90p31w ETCCDI threshold:

—— 30 years
5 A .
3 —— Threshold e 90th percentile
q, Extremes
S b e 30year
'.é (VR o .
g e 31 day running window
g Russo et al. 2015; Ceccherini et al. 2016; Russo et al. 2016;
= Sun et al. 2017; Brunner et al. 2018; Dosio et al. 2018;
- 5 4 Zschenderlein et al. 2018; Spensberger et al. 2020;
Vogel et al. 2020; Freychet et al. 2021;
Schielicke et al. 2022; Aadhar et al. 2023; Russo et al. 2023
1. Jan 1. Mar 1. May 1. Jul 1. Sep 1. Nov 31. Dec

e (15 day running window)

Della-Marta et al. 2007; Fischer et al. 2010;

Perkins et al. 2012; Perkins et al. 2013; Spinoni et al. 2015;
Perkins-Kirkpatrick et al. 2017; Lyon et al. 2019;
Perkins-Kirkpatrick et al. 2020;

Engdaw et al. 2021; Hirsch et al. 2021; Reddy et al. 2021;
Wu et al. 2023
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Many studies do not follow the ETCCDI recommendation
and use longer running window sizes which leads to a bias

TX90p31w ETCCDI threshold:
5 ‘ —— 30 years )
o —— Threshold e 90th percentile
o Extremes
s » e 30year
g e 31 day running window
g Russo et al. 2015; Ceccherini et al. 2016; Russo et al. 2016;
= Sun et al. 2017; Brunner et al. 2018; Dosio et al. 2018;
- 5 _ Zschenderlein et al. 2018; Spensberger et al. 2020;
Vogel et al. 2020; Freychet et al. 2021;
Schielicke et al. 2022; Aadhar et al. 2023; Russo et al. 2023
1. Jan 1. Mar 1. May 1. Jul 1. Sep 1. Nov 31. Dec
o\o L L 1 1 1
o
(W)
i

Mean frequency: 8.0%
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Many studies do not follow the ETCCDI recommendation
and use longer running window sizes which leads to a bias

Temperature (K)

Freq. (%)

TX90p31w

—— 30 years
—— Threshold
[ Extremes

1. Mar 1. May

. Dec

Mean frequency: 8.0%
Mean bias: -20%

Definition. Frequency bias

Relative deviation from the
expected extreme frequency

f(p,0) = fexp(p)

fl(p, ’LU) N fexp(p)
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x 100 %
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Seasonally warmer periods dominate the extreme

threshold when using long windows

wien

The strongest bias occurs in periods

of strong seasonal gradients.

TX90p31w

31. Dec

1. Nov

b

180 185

175

170

160

155

(M) ainjesadwal

(31) a4njesawal

190

165

150

Day of the year
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Seasonally warmer periods dominate the extreme
threshold when using long windows

TX90p31w The strongest bias occurs in periods
ul of strong seasonal gradients.

Temperature (K)
o

1. Jul>Q 1. Sep . Dec
~

<

v ,";“‘:;{,;‘,?,:;‘,*;“.““
2 it
© xi. ity "‘ A
o M il ‘ \i,‘i i° b 5 19
2 '!;;'g:i"1*€1¥fs
= WML LR

150 155 160 165 170 175 180 185 190
Day of the year
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Time for real data: daily maximum temperatures from ERA5

TX90p31w
5 ~— 30years ERAS 1961-1990
) —— Threshold . . .
i | AN grid cell in the North Atlantic
g 0_}5“‘ - (c) North Atlantic extreme frequency (mean bias: -33%)
()]
o PE—
§ Synthetic data 3007 igrﬁss’ q
_5- ~ 4
298 i Extremes
_ 1. Mar 1. May
S . .
g

. Dec
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Time for real data: daily maximum temperatures from ERA5

TX90p31w
5- — 30years ERAS 1961-1990

%3 —— Threshold . . .
3 Extremes grid cell in the North Atlantic
g o1 - (c) North Atlantic extreme frequency (mean bias: -33%)
()
Q- e
£ |Synthetic data ! 300- igrﬁszd

| < —

_5- X |
298 . Extremes

R 1. Mar 1. May
§ L 1
g

. Dec
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Part 2: Pitfalls in diagnosing temperature extremes
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Properties of relative extreme definitions

302 (c) North Atlantic extreme frequency (mean bias: -33%)

When defining relative extremes based on a 90th percentile 298| o Coremes
threshold we can expect on average 10% extreme frequency*

m Extremes

i
bl

2
1.Jan 1. Mar 1. May 1. Jul 1. Sep 1. Nov 31. Dec
2 10
.
[ ]

season  — '
a5 depends on the g3
Since the th reShOId fO”OWS the annual Cycle, Tank and Kénnen 2003; Fischer and Schar 2010; Hirsch et al. 2021
e independent of the location

since the threshold follows the spatial temperature distribution, zume s 2 scroeteretan 205
e independent of the dataset

since the threshold provides an implicit bias correction. e s o schoeteretat 2015

*in sample
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The bias depends on the strength of the seasonal cycle

Synthetic temperature
TX90p31w (no seasonal cycle)

- « white noise with

% standard deviation 1K

= « 30 years with 365 days

% e lag 1 day autocorrelation: 0.8
" s e sine with amplitude 0K
__1.Jan  1.Mar 1. May 1. Jul 1.Sep  1.Nov  31.Dec

£ 10 — ' ' ' ' ' |

g0

Mean frequency: 10.0%
Mean bias: 0%
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The bias depends on the strength of the seasonal cycle

Synthetic temperature

TX90p31w
- —— 30 years e white noise with
% L Lhreshold standard deviation 1K
2 ol ) e 30 years with 365 days
% e lag 1 day autocorrelation: 0.8
" s e sine with amplitude 3K
1. Jan 1. Mar 1. May 1. ]ul 1. éep 1. Nov 31. Dec
g
s

Mean frequency: 8.0%
Mean bias: -20%
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The bias depends on the strength of the seasonal cycle
relative to the amplitude of the internal variability

Synthetic temperature
TX90p31lw (weak internal variability)

: ] ——— 30 years e white noise with

v —— Threshold s _ae

3 S Exfremes standard deviation 0.5K

S f N i

g of o » 30 years with 365 days

2 e lag 1 day autocorrelation: 0.8
@

e sine with amplitude 3K

1. Jan 1. Mar 1. May 1. ]ul 1. éep 1. Nov 31. Dec

Freq. (%)

Mean frequency: 4.9%
Mean bias: -51%
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The amplitude of the seasonal cycle varies regionally

and with it the strength of the bias

ERAS ——

7

S : :
AT x.... UG
P AL
U gy
7% = |
"

(a) Extreme frequency bias (%

= =

)

-—10

-15
=20
=25

-30

The global mean bias in the
30 year period 1961-1990 in
ERAS is -10%

Regionally the bias can
exceed -30%
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Lniversitat

The amplitude of the seasonal cycle varies regionally wien

and with it the strength of the bias

3
) @
2
— ©
=. > > 3
ERA5 f > :
g % =
-0
__1lJan 1. Mar 1. May 1. Jul 1. Sep 1.Nov  31.Dec
IS
- —5 ;1?’ “]____““I l i
20
j_'o\ (e) Central Europe (11°E, 51°N) extreme frequency (-8%)

Temperature (K)

1. Jan 1. Mar 1. May 1. Jul 1. Sep 1. Nov 31. Dec

Freq. (%)

ouwo

(c) Western US (°W, 41°N) extreme frequency (-25%)

(i) Southern Ocean (21°W, 61°S) extreme frequency (-5%) (a) India (76°E, 19°N) extreme frequency (mean bias: -26%)
3 3 3
< < <
2 2 2
o n o [ 7 |
£ f £ £ 300 30 years Bl
@ 260 Q@ 250 @ —— Threshold

2951 mmm Extremes

__1l.jan 1. Mar 1. May 1. Jul 1. Sep 1.Nov  31.Dec __ 1.Jan 1. Mar 1. May 1. Jul 1. Sep 1.Nov  31.Dec __1ljan 1. Mar 1. May 1. Jul 1. Sep 1.Nov  31.Dec
X X X
=10 h—--- .---- | =10 t---- e =10 | e N - - s
g5 g5 g5
£ 0 £ o0 £o
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Properties of relative extreme definitions

When defining relative extremes based on a 90th percentile
threshold we can expect on average 10% extreme frequency*

. ason
| 35 depends on the se

Since the th reShOId fOIIOWS the annual Cycle, TankandKénnen20.03;FischerandSchéirZOlO;Hirschetal.2021
independent-of-theloeation the reglon
- Rias depends on o
since the threshold follows the spatial temperature distribution, zumge s 2 scroeteretan 205
e independent of the dataset
since the threshold provides an implicit bias correction. e s o schoeteretat 2015

*in sample
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Relative temperature extreme definitions are used
as implicit bias correction

The choice of a percentile-based threshold instead of a
fixed threshold allows for an implicit bias correction of
the climate model results. ...

g% Lniversitat
<Jwien



Relative temperature extreme definitions are used
as implicit bias correction

The choice of a percentile-based threshold instead of a
fixed threshold allows for an implicit bias correction of
the climate model results. ...

The use of separate thresholds for each dataset (e.g.,
observations and climate models) is intended to
account for

« offsets in absolute temperature and
« differences in the temperature distribution.

Remaining differences in derived metrics such as
cumulative heat and heatwave area or duration a are
then attributed to non-linear model errors.
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Relative temperature extreme definitions are used

as implicit bias correction

The choice of a percentile-based threshold instead of a
fixed threshold allows for an implicit bias correction of

the climate model results. ... s

The use of separate thresholds for each dataset (e.g.,
observations and climate models) is intended to
account for

« offsets in absolute temperature and
« differences in the temperature distribution.

Remaining differences in derived metrics such as
cumulative heat and heatwave area or duration a are
then attributed to non-linear model errors.

S Lniversitat
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ERA5
—— CanESM5 m

1. éep 1. Nov 31. Dec

TX90p31w difference for one grid cell in the Amazon
between CanESM5 and ERAS due to differences in the
mean seasonal cycle.

Lukas Brunner | 36



Lniversitat

Relative temperature extreme definitions are used wien

as implicit bias correction

w
=
w

The choice of a percentile-based threshold instead of a
fixed threshold allows for an implicit bias correction of
the climate model results. ... s

w

Temperature (K)

—— CanESM5 %

1. éep 1. Nov 31. Dec

The use of separate thresholds for each dataset (e.g., i

observations and climate models) is intended to
account for

« offsets in absolute temperature and
« differences in the temperature distribution.

Remaining differences in derived metrics such as
cumulative heat and heatwave area or duration a are
then attributed to non-linear model errors.

(top) TX90p31w difference for one grid cell in the
Amazon between CanESM5 and ERAS due to
differences in the mean seasonal cycle. (bottom) Mean
difference over 26 CMIP6 models.
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When defining relative extremes based on a 90th percentile
threshold we can expect on average 10% extreme frequency*

| — ERAS

—— CanESM5 %

1.Jan 1. Mar 1. May 1. Jul 1. Sep
Q

1. Nov 31. Dec

n p
13S depends oN the seaso
since the threshold follows tahe ANNUAI CYCI@, wans emen 2003 rischr ana s 2010 e el 202
e independentof-thelocation s on the g

: ias dep o
since the threshold follows ?He spatial temperature distribution, zumge s 2 scroeteretan 205
- independentofthedataset ends on the dataset

. . Bias depends. .
since the threshold prowde?an implicit bias correction. reemetet. 20m schosteretal 2015

*in sample
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Part 3: Eliminating the bias
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The solution:
No seasonal cycle — no problem
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The solution:
No seasonal cycle — no problem

TX90p31w (no seasonal cycle) Without a seasonal cycle in the data,
5. the bias disappears.
3
[0}
5
©
o
o
e
@
_5-
1. Jan 1. Mar 1. May 1. ]ul 1. éep 1. Nov 31. Dec
T
o 5
2o

Mean frequency: 10.0%
Mean bias: 0%
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The solution:
No seasonal cycle — no problem

THE USE OF INDICES TO IDENTIFY CHANGES IN
CLIMATIC EXTREMES

P.D. JONES', E.B. HORTON?, C K. FOLLAND?, M. HULME',
D.E. PARKER’ and T.A. BASNETT®

'Climatic Research Unit, University of East Anglia, Norwich, NR4 7TJ, UK.
*Hadley Centre, Meteorvlogical Office, Bracknell, RG12 25Y, UK.

As a first step, an average daily temperature
value for each day of the year is derived from the
period 1961-1990. [...] In the second step [a
percentile or return period] is fitted [...] to the
daily anomaly values relative to the smoothed
daily mean. e o9
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The solution:
No seasonal cycle — no problem

- (c) North Atlantic extreme frequency (mean bias: -33%)

<
300{ 30 years =
% —— Threshold T 5 | (| Ll
o 298 [ Extremes g
2 2961 5 Wl
o 294 4 g 0 ‘;““l | i
& 292%‘ il it g 5 3‘1“‘ Il \‘ i il \ P u‘\‘ 1T
2904 10 . {1 ‘ il | |
as il with seasonal cycle 5 . mean seasonal cycle removed
1. Jan 1. Mar 1. May 1. ]ul 1. éep 1. Nov 31. Dec _ 1. jan 1. Mar 1. May 1. 'Jul 1. éep 1. Nov 31. IDec
o o
g o
[T [T
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The solution: | ; Wl\e/ﬁrs ltat

No seasonal cycle (during threshold calculation) — no problem |

_300.01

N
©
=
&)

295.0 -

Temperature (K

A o
LIRS
| i
I
i | )

—— Corrected

1. jan 1. Mar 1. May 1. ]ul 1. éep 1. Nov 31. Dec




Impact of the correction: with seasonal cycle

ERA5S

(a) Extreme frequency bias (%)

Lniversitat
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N
=
o

N
o)
o

-15

3 3

g g

2 2

o [

v v

aQ Q

£ €

12 260 2 250

__ljan  1.Mar  1.May 1. Jul 1.Sep  1.Nov 3l.Dec _ l.Jan  1.Mar 1. May 1. Jul 1.Sep  1.Nov  31.Dec
g g

v,mh—--- .---- | <10 4----

g5 g5

Q (4

r 0 T 0

Y
Temperature (K)

N
5
o

7

N
%
o

1.Jan  1.Mar 1. May

1. Jul 1. Sep 1. Nov 31. Dec

-

(e) Central Europe (11°E, 51°N) extreme frequency (-8%)

-
ouo

Freq. (%)

300

t “\mt,;“: ;‘l‘:‘\v\w“\:«t\f i
e

Temperature (K)

1. Mar 1. May 1. Jul 1. Sep 1. Nov 31. Dec

(a) India (76°E, 19°N) extreme frequency (mean bias: -26%)

315
3
P 310
2
© 305 oA
3_ il \““»‘”\"(‘ r";"f.r?w““
£ 300 30 years )
@ —— Threshold
2951 mmm Extremes
__1l.Jan 1. Mar 1. May 1. Jul 1. Sep 1.Nov  31.Dec
X
< 101 o N - - - s
=5
Q
T 0
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Temperature anomaly (K)

Freq. (%)

Lniversitat
wien

Impact Of the correction: Without Seasonal CVCIE(h) Corrected: Arctic O. (114°W, 81°N) extreme frequency (-5%)

£ 2
>
£
(b) Corrected: Extreme frequency bias (%)
TN — = — A 5 N g
ERAS N T AP ~ > ¢
o
L g_
4 0 5 10
_Ljan 1. Mar 1. May 1. Jul 1. Sep 1. Nov 31. Dec
0 'S I e O e I O I
\ - g 5
¥ | oy ﬁ'ﬂ\t 0
(f) Corrected: C. Europe (11°E, 51°N) extreme frequency (0%)
<
-15 3
£
2
©
-20 s
®
g
- 7 -25 £
: _1jJan  LMar 1.May  1Jul 1.Sep  1.Nov  31.Dec
> 5 X
— =10 aaan s
= - 3N £ O
£ 0
(d) Corrected: W. US (109°W, 41°N) extreme frequency (0%) (j) Corrected: S. Ocean (21°W, 61°S) extreme frequency (-9%) (b) Corrected: India (76°E, 19°N) extreme frequency (1%)
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Impact Of the correction: Without Seasonal CyCIE(h) Corrected: Arctic O. (114°W, 81°N) extreme frequency (-5%)
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Summary and conclusions i
gE
T Y —
e Aninteraction between running windows and the seasonal |,,,|§|"“:;“:!H )
cycle leads to a considerable bias in temperature extremes i !mh”lihghlml
. Y '*’f§§'”::§!i',
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Summary and conclusions

« An interaction between running windows and the seasonal =l
cycle leads to a considerable bias in temperature extremes

« The bias varies across seasons, regions, datasets, and climatic
states, violating assumptions about properties of relative
extreme definitions
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cycle leads to a considerable bias in temperature extremes

« The bias varies across seasons, regions, datasets, and climatic
states, violating assumptions about properties of relative
extreme definitions

e Itis mostly eliminated by removing the mean seasonal cycle
before calculating the extreme threshold
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Summary and conclusions

e Aninteraction between running windows and the seasonal
cycle leads to a considerable bias in temperature extremes

« The bias varies across seasons, regions, datasets, and climatic
states, violating assumptions about properties of relative
extreme definitions

e Itis mostly eliminated by removing the mean seasonal cycle
before calculating the extreme threshold

We strongly warn against the use of long running windows
without correction when calculating extreme thresholds. The use
of such a biased method is never advisable, even though the
impacts on derived metrics might not always be strong or
immediately apparent. sme v mpes

S Lniversitat
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Bonus slides: More pitfalls
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Bias impact on future change signals
using a fixed 1961-1990 threshold
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Question: How does the bias affect
estimates of future extreme changes?

Problem: We don’t know what extreme
frequency to expect in the future
(out-of-base).
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Bias impact on future change signals
using a fixed 1961-1990 threshold

Base period Future period Question: How does the bias affect
(1961-1990) (2071-2100) estimates of future extreme changes?
(a) Frequency (%) (b) Frequency (%)

past, uncorrected future, uncorrected

Problem: We don’t know what extreme
Without i frequency to expect in the future

correction I, i (out-of-base).

(d) Frequency (%) (e) Frequency (%)
past, corrected future, corrected

Solution: Use the corrected frequency
as reference which is also available in
the future.

Reference
(with correction)
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Bias impact on future change signals
using a fixed 1961-1990 threshold

Base period Future period Question: How does the bias affect
(1961-1990) (2071-2100) estimates of future extreme changes?
(a) Frequency (%) (b) Frequency (%)

past, uncorrected

future, uncorrected
10.0

Problem: We don’t know what extreme
frequency to expect in the future
(out-of-base).

Without
correction

7.5
7.0
(d) Frequency (%) (¢) Frequency (%)

past, corrected

uture, corrected

10.0

Solution: Use the corrected frequency
as reference which is also available in

the future.
Reference

In the future some regions have 100% — The bias generally decreases with
extreme frequency — bias must be 0%  increasing extreme frequency!
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using a fixed 1961-1990 threshold Cha”r:nge

H . (a) Extreme frequency change (ratio)
Base period Future period 2071-2100 relative to 1961-1990
(1961-1990) (2071-2100) .
(a) Frequency (%) (b) Frequency (%) 10
past, uncorrected future, uncorrected X
x8
X6
Without x4
correction x2
(d) Frequency (%) (e) Frequency (%)
past, corrected future, corrected (b) Corrected: Extreme frequency change (ratio)
10.0 2071-2100 relative to 1961-1990
x12
x10
x8
Reference X6

x4

x2
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Bias impact on future change signals

using a fixed 1961-1990 threshold Cha:\;e

(a) Extreme frequency change (ratio)
2071-2100 relative to 1961-1990

(c) Extreme frequency change bias (%)

x10

30 x8

20 x6

x4
10

x2

(b) Corrected: Extreme frequency change (ratio)
-10 2071-2100 relative to 1961-1990

-20

-30 x10

x8

X6

— the bias leads to an overestimation of
extreme changes by up to 30%!

x4

x2
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Bias impact on summer heatwaves changes

(d) Heatwave frequency change bias (%)

30

20

10
May-September e Wty W B .
November-March

-10

-20

-30

Definition heatwave: At least 3
consecutive TX90p31w days.
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Backup Slides
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Freq. (%) Pseudo temperature (K)

Pseudo temperature (K}

Pseudo temperature (K) Freg. (%) Pseudo temperature (K)

Freq. (%)

Figure S3: Threshold exceedances for different window sizes in synthetic data. Effect of different window
sizes on the frequency of 90th percentile exceedances using the synthetic data with a strong seasonal cycle from figure 2

in the main manuscript. The respective top panels show threshold and exceedances for 30 seasonal cycles. The smaller
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The running window bias exceeds the well know
in-base/out-of-base jump

Without seasonal cycle

(a) Frequency bias (%)

40
—— Out-of-base K
—— In-base X4
20 1 i 3
0 pessssssss==c===—— T
3 b 2 \ /\‘
_20 \\
\\
\\
—-40 : ; T
80 85 90 95 99
Percentile

40

30

20

(b) Out-of-base minus in-base (%)

Window size
--- 5 day window
—— 31 day window

1
I
I
I
]
1
I
~

)
=10 + ! I \/

Percentile

Zhang et al. 2005
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With seasonal cycle

(c) In-base frequency bias (%)

Tl T T
SRS ST NN . R
s

Seasonal cycle

| — Without
—— Moderate
—— Strong
80 85 90 95
Percentile
Brunner and Voigt
(accepted)
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The extreme frequency difference between regions with
high and low bias can reach about 25%

(a) Spatial bias inhomogeneity

Inhomogeneity 0.0% 0.0% 0.0% 0.0%
< 1 5th/95th perc 0.0%/0.0% 33.3%/33.3%  66.7%/66.7% 233.3%/233.3%
© Mean 0.0% 33.3% 66.7% 233.3%
P 0.6% 2.6% 4.6% 9.6% 19.2%
N 51 -0.3%/0.3% 2.2%/0.4% 2.6%/7.2% 8.2%/1.4%  13.2%/32.4%
o 0.0% -0.8% 5.0% -3.3% 23.1%
g 1.1% 7.9% 12.1% 18.7% 24.7%
S 154 -0.6%/0.5% 7.9%/-0.1%  -10.0%/2.1%  -18.3%/0.5%  -14.2%/10.5%
< 0.0% -3.1% D -7.5% 0.1%
i 2.7% 23.5%
Q311 -1.7%/1.0% | -24.7%/-1.2%
= -0.1% -10.4%
S 4.3%
€ 454 -2.8%/1.6%

-0.2%
50 90 95 98 99

Percentile
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Pseudo temperature (K)

Freq. (%)

Autocorrelation leads to a small bias even without

seasonal cycle

Window length: 31

Window length: 31
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(c) Arabian Sea CanESM5 extreme frequency (mean diff.: +32%)
| — 1961-1990

[Relative thresholds with shifting base-periods] can be seen Z3s| — 22947

~ 3061
[

as a proxy for full adaptation to the respective prevailing ‘;222 dli

future climate. [...] Changes in [heatwave] duration with &3 |

[such] thresholds would be related to physical drivers of 295
heatwaves such as circulation changes or land-atmosphere

feedbaCks. Vogel et al. (2020)

Relative temperature extreme definitions are intended to
offset distributional shifts due to climate change

1. Jan 1. Mar 1. May 1.)u|
1

1. éep 1. Nov 31. Dec

Freq. (%)

ouno

(a) CMIP6 difference 1961-1990 to 2071-2100 (%)

P S

When using two base-periods, with separate thresholds
frequencies in both periods are assumed to be about 10%.

Changes in the shape of the seasonal cycle under warming

P . . top) TX90p31w diff f id cell in th
can lead to a shift in the bias and, hence to differences. (top) TX90p31w difference for one grid cell in the
Arabian Sea between CanESM5 in the period
1961-1990 and 2071-2100. (bottom) Mean
d|fference over 26 CMIP6 m0de|S. Brunner und Voigt (in review)
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Full disclosure:
We are not the first to come up with this

< Post

John B. Holbein
@JohnHolbeint

Lol who did this

THE USE OF INDICES TO IDENTIFY CHANGES IN
CLIMATIC EXTREMES

P.D. JONES', E.B. HORTON?, C K. FOLLAND?, M. HULME',
D.E. PARKER’ and T.A. BASNETT®

'Climatic Research Unit, University of East Anglia, Norwich, NR4 7TJ, UK.
*Hadley Centre, Meteorological Office, Brackmell, RG12 2SY, U/K.

As a first step, an average daily temperature
value for each day of the year is derived from the

"

period 1961-1990. [...] In the second step [a ‘ﬁd—“éar-old
percentile or return period] is fitted [...] to the : g,as‘!r that no®
one cites

daily anomaly values relative to the smoothed

daily mean
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Pseudo temperature (K)

Freq. (%)

Window length: 31

—— 30 years
= Threshold
[ Exceedances

0 50 100 150 200 250 300 350
Day of the year

White noise with lag 1 day
autocorrelation 0.8
— 7.9%

Pseudo temperature (K)

Freq. (%)

Window length: 31
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—— 30 years
= Threshold

[ Exceedances

50 100 150 200 250 300
Day of the year

350

White noise no autocorrelation

— 8.3%
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