

Constraining European projections EUCP progress towards a unified method Lukas Brunner | EUCP final workshop | May 4th 2022

with contributions from all of WP2 & EUCP

Constraining future projections – IPCC AR6

There are [...] good reasons for basing an assessment of future global climate on lines of evidence in addition to the [unconstrained] projection simulations. However, despite some progress, no universal, robust method for weighting a multi-model projection ensemble is available [...]

From weather forecasting: "What Is a Good Forecast?" Murphy 1993

- Accuracy: level of agreement between forecast and truth
- Skill: accuracy relative to a reference forecast
- **Reliability**: average agreement between forecasts and truth
- **Sharpness**: tendency of the forecast to predict specific values

- **Consistency**: forecast is consistent with prior knowledge
- Value: degree to which the forecast helps decision makers

What is good constraining? - we don't know the 'truth'

- Accuracy: level of agreement between constrained projection and 'truth'
- **Skill**: accuracy relative to the **unconstrained projection**
- Reliability: average agreement between constrained projections and 'truth'
- Sharpness: tendency of the constrained projections to predict specific values compared to the unconstrained projections
- **Consistency**: **constraint** is consistent over different methods
- Value: degree to which the constrained projection helps users

What is good constraining? - we don't know the 'truth'

 EUCP Accuracy: level of agreement between constrained projection

 EUCP Skill: accuracy relative to the unconstrained projection

 EUCP Reliability: average agreement between constrained projection

 Sharpness: tendency of the constrained projections to predict specific values compared to the unconstrained projections

EVEP Consistency: constraint is consistent over different methons EVEP Value: degree to which the constrained projection helps

Individual perfect model tests

Brunner et al. 2020a, O'Reilly2020, Ribes et al. 2021

Combined perfect model tests O'Reilly et al. in preparation

Comparison and combination of methods Brunner et al. 2020b, Hegerl et al. 2021

Muli-User Forum

Application for impact studies

Weiland et al. 2021

What is good constraining? - we don't know the 'truth'

HOCP Accuracy: level of agreement between constrained projection and training EVEP Skill: accuracy relative to the **unconstrained projection** EUCP Reliability: average agreement between constrained proje

Sharpness: tendency of the constrained projections to predict specific values compared to the **unconstrained projections**

EVEP Consistency: constraint is consistent over different methoms Euco Value: degree to which the constrained projection helps u

Individual perfect model tests

Brunner et al. 2020a, O'Reilly2020, Ribes et al. 2021

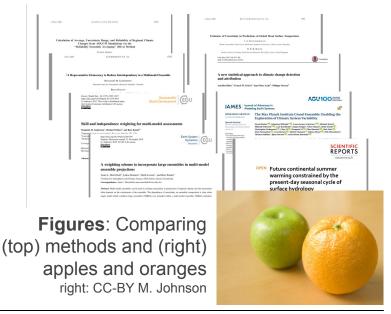
Combined perfect model tests O'Reilly et al. in preparation

Comparison and combination of methods Brunner et al. 2020b, Hegerl et al. 2021

Muli-User Forum

Application for impact studies

Weiland et al. 2021

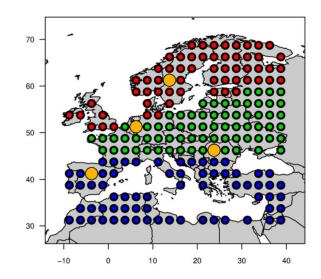


Comparing different constraining methods is not straight-forward

No **coordinated framework** to compare methods exist. They might differ for a range of reasons independent of the methods itself:

- variable (e.g., temperature vs precipitation)
- region and mask (e.g., global vs Europe)
- season, time period, and reference period
- models included (incl. members included)
- uncertainties included (e.g., internal variability)
- reported results (e.g., mean vs median)

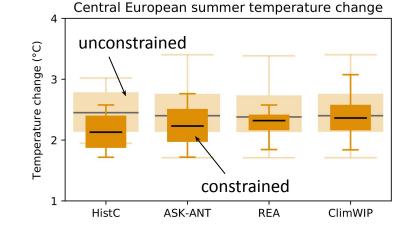
A common framework for method comparison


Goals

- consistent over all methods
- inclusive to allow as many methods as possible to participate
- unambiguous guidelines
- easy to apply

Drawbacks

- not the best possible setup for individual methods
- potentially not the most interesting cases scientifically



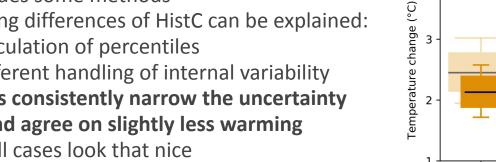
2041-60 minus 1995-2014

Projections for Central European summer temperature with CMIP5

- Example of most consistent setup
 - \rightarrow Excludes some methods
- Remaining differences of HistC can be explained:
 - calculation of percentiles
 - different handling of internal variability
- Methods consistently narrow the uncertainty range and agree on slightly less warming → not all cases look that nice

Brunner et al. 2020b

ClimWIP


Brunner et al. 2020b

HistC

ASK-ANT

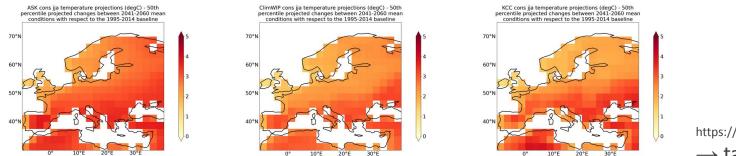
4

Projections for Central European summer temperature with CMIP5

- Example of most consistent setup
 - \rightarrow Excludes some methods
- Remaining differences of HistC can be explained:
 - calculation of percentiles 0
 - different handling of internal variability 0
- Methods consistently narrow the uncertainty range and agree on slightly less warming \rightarrow not all cases look that nice
- What's the 'best' method? \rightarrow talk by Chris

Central European summer temperature change

REA

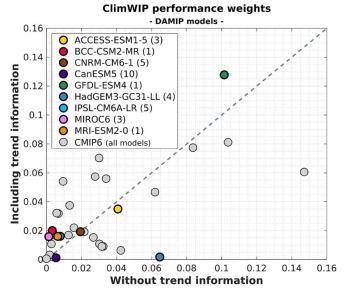

τt

European Clima

Projections for European summer temperature with CMIP6

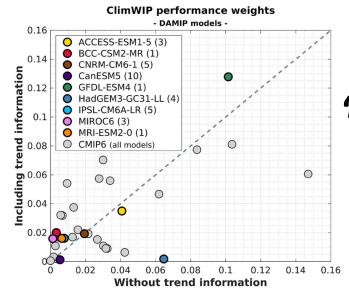
nate Prediction system	EUCP WP2 - Atlas of constrained climate projections												HOME	ABOUT	EXAMPLES
	Temperature	•)(Summer	~)(50-percentile	•)(CMIP6	~)(ASK	~)	Constrained	~	Ť		
	Temperature	•)(Summer	•)(50-percentile	~)(CMIP6	~)(ClimWIP	~)	Constrained	~	Ť		
	Temperature	•)(Summer	•)(50-percentile	•)(CMIP6	~)(ксс	~	Constrained	~	T	+	

https://eucp-project.github.io/atlas/ → talk by Peter


DOWNLOAD DATA

Combining different constraints/constraining methods is even less straight-forward

Example: Combining ClimWIP and ASK and interpreting the role of temperature trend


Hegerl et al. 2021

Combining different constraints/constraining methods is even less straight-forward

Example: Combining ClimWIP and ASK and interpreting the role of temperature trend

[...] different information used can
pull observational constraints in
different directions.

[We need] to avoid accounting for trends twice when applying the constraints subsequently [...]

[...] we need a common and consistent test protocol for skill and reliance to ensure performance.

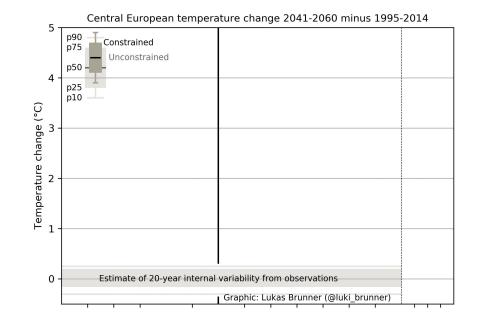
Hegerl et al. 2021

- Many individual studies focussing on Europe and the globe sorry too many to list them all
- Framework and recommendations to compare methods Brunner et al. 2020b, Hegerl et al. 2021
- Method comparison and model-as-truth evaluation Brunner et al. 2020b, O'Reilly et al. in preparation

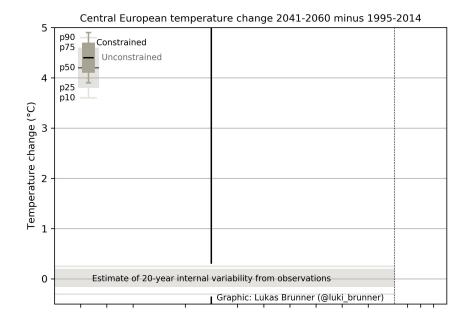
- Many individual studies focussing on Europe and the globe sorry too many to list them all
- Framework and recommendations to compare methods Brunner et al. 2020b, Hegerl et al. 2021
- Method comparison and model-as-truth evaluation Brunner et al. 2020b, O'Reilly et al. in preparation
- Ongoing work on temporally coherent constraints → session 3 Hegerl et al. 2021, Befort et al. in review
- Ongoing work on a method selection/combination → talk by Chris O'Reilly et al. in preparation

- Many individual studies focussing on Europe and the globe sorry too many to list them all
- Framework and recommendations to compare methods Brunner et al. 2020b, Hegerl et al. 2021
- Method comparison and model-as-truth evaluation Brunner et al. 2020b, O'Reilly et al. in preparation
- Ongoing work on temporally coherent constraints → session 3 Hegerl et al. 2021, Befort et al. in review
- Ongoing work on a method selection/combination \rightarrow talk by Chris O'Reilly et al. in preparation
- New constraining challenges arising with the emergence of storm resolving models
 - border between NWP and climate projections starts to blur
 - climatological time scales not available due to computational limitations
 - **new methods to evaluate models on shorter time scales** Talk by Lukas at <u>Climate Informatics Conference</u> → "Classifying climate models based on temperature patterns from a single day using a convolutional neural network"

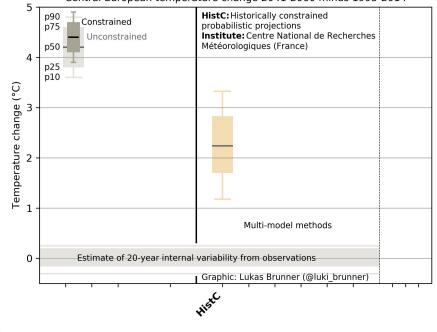
References


- Brunner, L., Pendergrass, A. G., Lehner, F., Merrifield, A. L., Lorenz, R., & Knutti, R. (2020). Reduced global warming from CMIP6 projections when weighting models by performance and independence. Earth System Dynamics, 11(4), 995–1012. <u>https://doi.org/10.5194/esd-11-995-2020</u>
- Brunner, L., McSweeney, C., Ballinger, A. P., Befort, D. J., Benassi, M., Booth, B., Coppola, E., de Vries, H., Harris, G., Hegerl, G. C., Knutti, R., Lenderink, G., Lowe, J., Nogherotto, R., O'Reilly, C., Qasmi, S., Ribes, A., Stocchi, P., & Undorf, S. (2020). Comparing Methods to Constrain Future European Climate Projections Using a Consistent Framework. Journal of Climate, 33(20), 8671–8692. <u>https://doi.org/10.1175/JCLI-D-19-0953.1</u>
- Ribes, A., Qasmi, S., & Gillett, N. P. (2021). Making climate projections conditional on historical observations. Science Advances, 7(4), eabc0671. <u>https://doi.org/10.1126/sciadv.abc0671</u>
- O'Reilly, C. H., Befort, D. J., & Weisheimer, A. (2020). Calibrating large-ensemble European climate projections using observational data. Earth System Dynamics, 11(4), 1033–1049. <u>https://doi.org/10.5194/esd-11-1033-2020</u>
- Hegerl, G. C., Ballinger, A. P., Booth, B. B. B., Borchert, L. F., Brunner, L., Donat, M. G., Doblas-Reyes, F. J., Harris, G. R., Lowe, J., Mahmood, R., Mignot, J., Murphy, J. M., Swingedouw, D., & Weisheimer, A. (2021). Toward Consistent Observational Constraints in Climate Predictions and Projections. Frontiers in Climate, 3(June), 1–22. https://doi.org/10.3389/fclim.2021.678109
- Sperna Weiland, F. C., Visser, R. D., Greve, P., Bisselink, B., Brunner, L., & Weerts, A. H. (2021). Estimating Regionalized Hydrological Impacts of Climate Change Over Europe by Performance-Based Weighting of CORDEX Projections. Frontiers in Water, 3. <u>https://doi.org/10.3389/frwa.2021.713537</u>

- Most methods show a slightly lower constrained median warming
- Most methods show a reduction in spread
- More agreement in the central estimate than in extremes
- Not fully consistent: unconstrained distributions differ

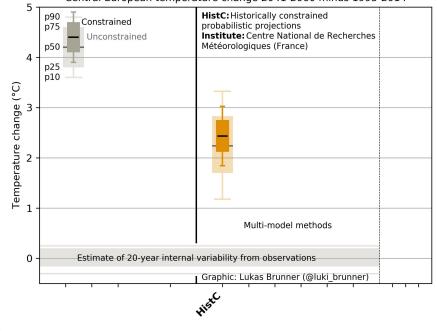


- Most methods show a slightly lower constrained median warming
- Most methods show a reduction in spread
- More agreement in the central estimate than in extremes
- Not fully consistent: unconstrained distributions differ



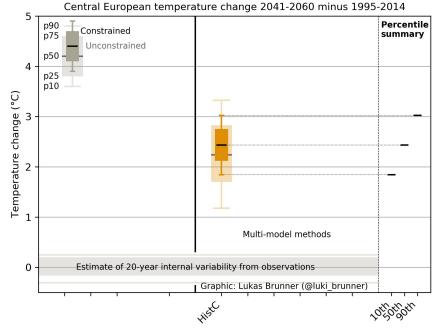


- Most methods show a slightly lower constrained median warming
- Most methods show a reduction in spread
- More agreement in the central estimate than in extremes
- Not fully consistent: unconstrained distributions differ

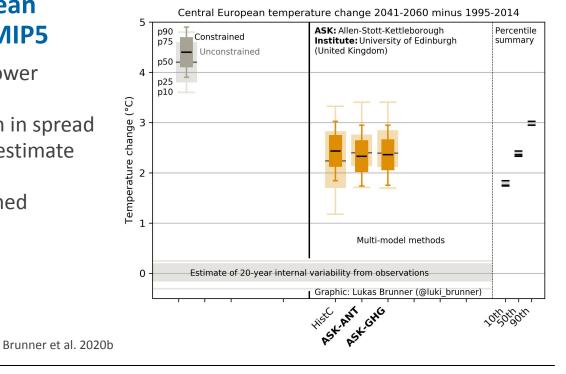

Brunner et al. 2020b



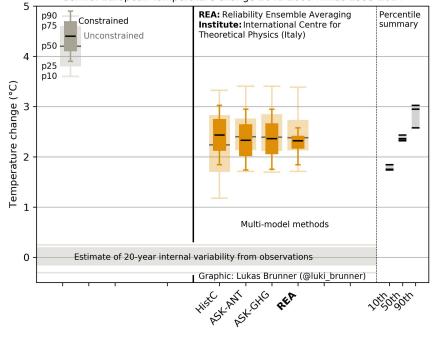
- Most methods show a slightly lower constrained median warming
- Most methods show a reduction in spread
- More agreement in the central estimate than in extremes
- Not fully consistent: unconstrained distributions differ


Brunner et al. 2020b

- Most methods show a slightly lower constrained median warming
- Most methods show a reduction in spread
- More agreement in the central estimate than in extremes
- Not fully consistent: unconstrained distributions differ



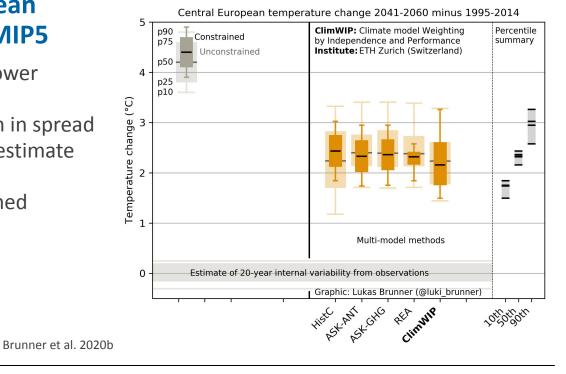
- Most methods show a slightly lower constrained median warming
- Most methods show a reduction in spread
- More agreement in the central estimate than in extremes
- Not fully consistent: unconstrained distributions differ



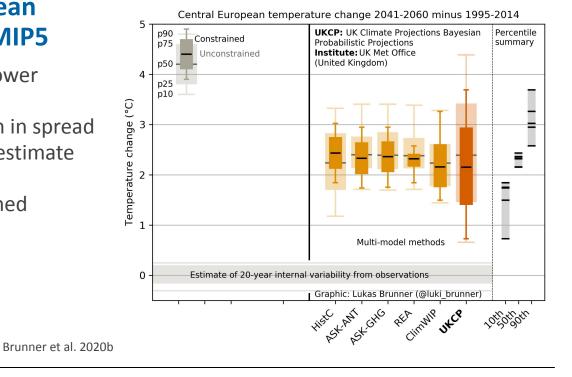
- Most methods show a slightly lower constrained median warming
- Most methods show a reduction in spread

Brunner et al. 2020b

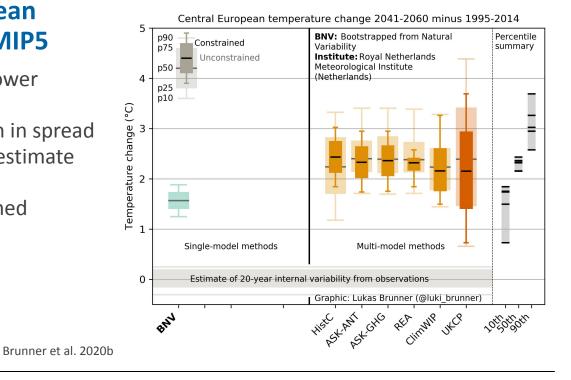
- More agreement in the central estimate than in extremes
- Not fully consistent: unconstrained distributions differ



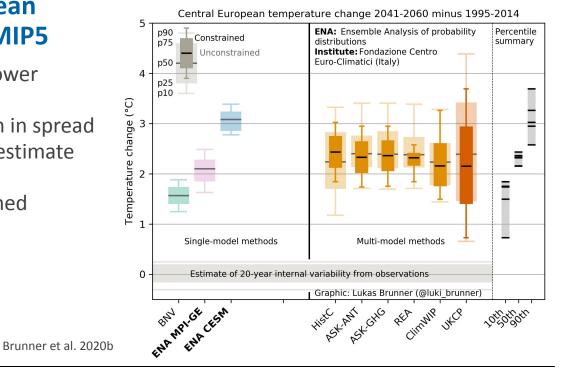
- Most methods show a slightly lower constrained median warming
- Most methods show a reduction in spread
- More agreement in the central estimate than in extremes
- Not fully consistent: unconstrained distributions differ



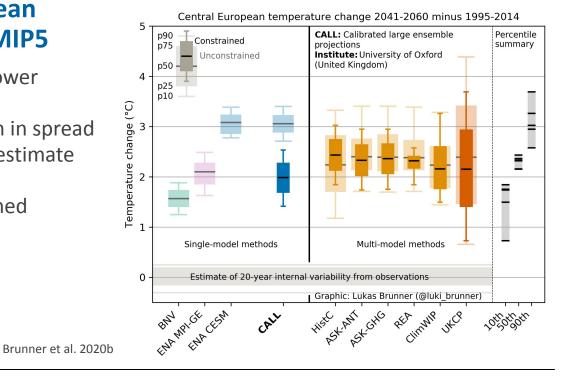
- Most methods show a slightly lower constrained median warming
- Most methods show a reduction in spread
- More agreement in the central estimate than in extremes
- Not fully consistent: unconstrained distributions differ



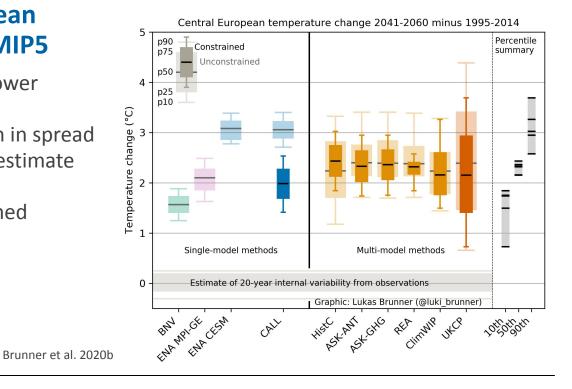
- Most methods show a slightly lower constrained median warming
- Most methods show a reduction in spread
- More agreement in the central estimate than in extremes
- Not fully consistent: unconstrained distributions differ



- Most methods show a slightly lower constrained median warming
- Most methods show a reduction in spread
- More agreement in the central estimate than in extremes
- Not fully consistent: unconstrained distributions differ



- Most methods show a slightly lower constrained median warming
- Most methods show a reduction in spread
- More agreement in the central estimate than in extremes
- Not fully consistent: unconstrained distributions differ



- Most methods show a slightly lower constrained median warming
- Most methods show a reduction in spread
- More agreement in the central estimate than in extremes
- Not fully consistent: unconstrained distributions differ

