

Constraining Future European Climate from GCMs Methods, Results, and Ways Forward

Lukas Brunner | DACH Qualitätskontroll-Methoden Treffen | February 4th 2022

Many thanks to all collaborators!

About me

- Studied Physics in Graz
- PhD in Graz, Edinburgh, Oslo
- PostDoc in Zürich
- Senior Scientist in Vienna

More: **lukasbrunner.github.io**

European Climate Prediction system

Uncertainty in projections of future climate

Changes in the distribution of uncertainty

Changes in the distribution of uncertainty

How to quantify (and reduce) model uncertainty?

Emergent constraint: models with too much historical warming show higher TCR

> Lehner et al. (2020) Tokarska et al. (2020)

Uncertainty in projections of regional climate

A weighting scheme that can be applied global or regional

Earth Syst. Dynam., 11, 995-1012, 2020 https://doi.org/10.5194/esd-11-995-2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License. c ()

Key Points:

Reduced global warming from CMIP6 projections when weighting models by performance and independence

Lukas Brunner¹, Angeline G. Pendergrass^{2,1,a}, Flavio Lehner^{1,a}, Anna L. Merrifield¹, Ruth Lorenz¹, and Reto Knutti¹

¹Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland ²National Center for Atmospheric Research, Boulder, CO, USA ^anow at: Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, NY, USA

Correspondence: Lukas Brunner (lukas.brunner@env.ethz.ch)

Received: 23 April 2020 - Discussion started: 28 April 2020 Revised: 2 October 2020 - Accepted: 5 October 2020 - Published: 13 November 2020 Geosci. Model Dev., 10, 2379-2395, 2017 https://doi.org/10.5194/gmd-10-2379-2017 C Author(s) 2017. This work is distributed under the Creative Commons Attribution 3.0 License. 0

Skill and independence weighting for multi-model assessments

Weighting climate models by regional performance

Is a model "fit for purpose" given a specific target?

We might want to trust models less if they are "far away" from observations \rightarrow weighting by performance

September Arctic sea ice extent in CMIP5 historical / RCP8.5 runs and observations. Massonnet et al. (2012)

A word about model independence

- Multi-model studies often draw on all available models
- the CMIP multi-model ensembles are not designed to only include independent models ('ensembles of opportunity')
 - Several models are closely related (one different component, resolution)
 - Models have been branched from each other
 - Some models share components
- \rightarrow weighting by independence

Weighted changes in Mediterranean summer temperature

- weighted distribution shows stronger warming
- The interquartile range is reduced by 24% by the end of the century

Weighted **Mediterranean summer temperature** anomaly (relative to 1995-2014) based on 37 CMIP5 models (79 realizations). Brunner et al. (2019)

Does the weighting improve projections?

From weather forecasting: "What Is a Good Forecast?" Murphy (1993)

- Accuracy: level of agreement between forecast and truth
- **Skill**: accuracy relative to a reference forecast
- Reliability: average agreement between forecasts and truth
- **Sharpness**: tendency of the forecast to predict specific values (counter-example: the climatology has no sharpness)
- **Consistency**: forecast is consistent with prior knowledge
- Value: degree to which the forecast helps decision makers

Quality

Does the weighting improve projections?

What Is a Good Weighting? - we don't know the 'truth'

- **X** Accuracy: level of agreement between weighted projection and 'truth'
- **Skill**: accuracy relative to the **unweighted projection**
- **X** Reliability: average agreement between weighted projections and 'truth'
- Sharpness: tendency of the weighted projections to reduce model uncertainty compared to the unweighted projections
- **?** Consistency: is weighting consistent with other methods
- Value: degree to which the weighted projection helps users

Consistency: is weighting consistent with other methods?

No **coordinated framework** to compare methods exist.

They might differ for a range of reasons independent of the methods itself:

- region (global vs Europe)
- season and time period
- models included
- uncertainties included...

A consistent framework for method comparison

- 8 groups contributing methods to quantify uncertainty
- European temperature & precipitation changes in 8 regions
- winter (DJF) and summer (JJA)
- same horizontal resolution

⁸Comparing Methods to Constrain Future European Climate Projections Using a Consistent Framework[®]

LUKAS BRUNNER,^a CAROL MCŚWEENEY,^b ANDREW P. BALLINGER,^c DANIEL J. BEFORT,^d MARIANNA BENASSI,^c BEN BOOTH,^b ERIKA COPPOLA,^f HYLKE DE VRIES,^g GLEN HARRIS,^b GABRIELE C. HEGERL,^c RETO KNUTTI,^a GEERT LENDERINK,^g JASON LOWE,^b RITA NOGHEROTTO,^f CHRIS O'REILLY,^d SAID QASMI,^b AURÉLIEN RIBES,^b PAOLO STOCCHI,^{fi} AND SABINE UNDORF^{cj}

⁶ Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland ^b Mer Office Hadley Centre, Exeter, United Kingdom ^cSchool of GeoSciences, University of Edinburgh, Edinburgh, United Kingdom ^d Atmospheric, Oceanic and Planetary Physics, Diepartment of Physics, University of Oxford, Oxford, United Kingdom ^e Fondazione Centro Euro-Medierranco sui Combinamenti Climatic, Bologna, Indy ^f The Abdus Salam International Centre for Theoretical Physics, Trieste, Italy ^f Royal Netherlands Meteorological Institute, De Bilt, Netherlands ^b CNRM, Université de Toulouse, Météo-France, CNRS, Toulouse, France

Institution name	acronym	Method name	References
ETH Zurich (Switzerland)	ClimWIP	Climate Model Weighting by Independence and Performance	Knutti et al. (2017b); Lorenz et al. (2018); Brunner et al. (2019) ^a
International Centre for Theoretical Physics (Italy)	REA	Reliability ensemble averaging	Giorgi and Mearns (2002, 2003) ^b
University of Edinburgh (United Kingdom)	ASK	Allen-Stott-Kettleborough	Allen et al. (2000); Stott and Kettleborough (2002); Kettleborough et al. (2007)
Centre National de Recherches Météorologiques (France)	HistC	Historically constrained probabilistic projections	Ribes et al. (2020, manuscript submitted to <i>Sci. Adv.</i>) ^c
Met Office (United Kingdom)	UKCP	U.K. Climate Projections (UKCP) Bayesian probabilistic projections method	Sexton et al. (2012); Harris et al. (2013); Sexton and Harris (2015); Murphy et al. (2018)
University of Oxford (United Kingdom)	CALL	Calibrated large ensemble projections	O'Reilly et al. (2020)
Royal Netherlands Meteorological Institute (Netherlands)	BNV^*	Bootstrapped from natural variability	See the online supplemental material
Fondazione Centro Euro-Mediterraneo sui Cambiamenti Climatici (Italy)	ENA*	Ensemble analysis of probability distributions	See the online supplemental material

^a Source code available online (https://github.com/lukasbrunner/ClimWIP). ^b Source code available online (http://doi.org/10.5281/zenodo.3890966).

^c Method tool available online (https://saidqasmi.shinyapps.io/bayesian).

Atlas of regional changes

How should this information be handled by users?

Our results raise a number of questions about how information from multiple methods can be communicated, combined, or applied, in particular for cases where **constrained distributions disagree**.

- considering the decision context
- using agreeing methods
- combining methods outputs
- combing methods before applying them
- selecting methods based on a consistent skill measure

Brunner et al. (2020)

How should this information be handled by users?

Our results raise a number of questions about how information from multiple methods can be communicated, combined, or applied, in particular for cases where **constrained distributions disagree**.

- considering the decision context
- using agreeing methods
- combining methods outputs O'Reilly et al. (in preparation)
- combing methods before applying them Hegerl et al. (2021)
- selecting methods based on a consistent skill measure O'Reilly et al. (in preparation)

Does the weighting improve projections?

What Is a Good Weighting? - we don't know the 'truth'

- X Accuracy: level of agreement between weighted projection and 'truth'
- **Skill**: accuracy relative to the **unweighted projection**
- **X** Reliability: average agreement between weighted projections and 'truth'

Brunner et al. (2020)

Summary and outlook

- The importance of model uncertainty depends on the case
- Different methods exist to constrain regional climate uncertainty
- These methods provide multiple lines of evidence but they are not always consistent
- Work is ongoing to provide objective method skill measures

Resources:

- Atlas: https://eucp-project.github.io/atlas
- **Storyboards:** https://eucp-project.github.io/storyboards
- KCC (Bayesian constraining): https://saidqasmi.shinyapps.io/bayesian
- ClimWIP (Model weighting) implementation on ESMValTool: https://docs.esmvaltool.org/en/latest/recipes/recipe_climwip.html

Literature

- Lehner, F., Deser, C., Maher, N., Marotzke, J., Fischer, E. M., Brunner, L., Knutti, R., & Hawkins, E. (2020). Partitioning climate projection uncertainty with multiple large ensembles and CMIP5/6. Earth System Dynamics, 11(2), 491–508. https://doi.org/10.5194/esd-11-491-2020
- Hawkins, E., & Sutton, R. (2009). The Potential to Narrow Uncertainty in Regional Climate Predictions. Bulletin of the American Meteorological Society, 90(8), 1095–1108. <u>https://doi.org/10.1175/2009BAMS2607.1</u>
- Tokarska, K. B., Stolpe, M. B., Sippel, S., Fischer, E. M., Smith, C. J., Lehner, F., & Knutti, R. (2020). Past warming trend constrains future warming in CMIP6 models. Science Advances, 6(12), eaaz9549. <u>https://doi.org/10.1126/sciadv.aaz9549</u>
- Brunner, L., Lorenz, R., Zumwald, M., & Knutti, R. (2019). Quantifying uncertainty in European climate projections using combined performance-independence weighting. Environmental Research Letters, 14(12), 124010. <u>https://doi.org/10.1088/1748-9326/ab492f</u>
- Brunner, L., McSweeney, C., Ballinger, A. P., Befort, D. J., Benassi, M., Booth, B., Coppola, E., de Vries, H., Harris, G., Hegerl, G. C., Knutti, R., Lenderink, G., Lowe, J., Nogherotto, R., O'Reilly, C., Qasmi, S., Ribes, A., Stocchi, P., & Undorf, S. (2020). Comparing Methods to Constrain Future European Climate Projections Using a Consistent Framework. Journal of Climate, 33(20), 8671–8692. https://doi.org/10.1175/JCLI-D-19-0953.1
- Palmer, T. E., Booth, B. B. B., & McSweeney, C. F. (2021). How does the CMIP6 ensemble change the picture for European climate projections? Environmental Research Letters, 16(9), 094042. <u>https://doi.org/10.1088/1748-9326/ac1ed9</u>
- Ribes, A., Qasmi, S., & Gillett, N. P. (2021). Making climate projections conditional on historical observations. Science Advances, 7(4), eabc0671. <u>https://doi.org/10.1126/sciadv.abc0671</u>

