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Evolution of past and future climate

● It is unequivocal that human 
influence has warmed the 
atmosphere, ocean and land. 
(IPCC AR6 SPM)

● global temperature until today has 
increased by about 1°C compared 
to pre-industrial conditions

● estimates of future warming are 
based on climate models

Figure: Global mean, annual mean temperature 
anomalies (relative to 1851-1980)  based on four 
observational datasets. RealClimate/Gavin Schmidt, 15.1.22

?

*HadCRUT5: Jan-Nov mean for 2021
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Climate models and climate model projections

● A model is an informative 
representation of an object, 
person or system. Wikipedia

● Climate models simulate the 
interactions of the important 
drivers of climate. Wikipedia

● Climate model are used to
○ simulate historical climate
○ understand (parts of) the climate 

system and interactions
○ project future climate
○ etc... Figure: Schematic representation of a general 

circulation model. Edwards (2011)
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What Climate models are used for

CC-BY-NC theconversation.com/Alex Farnsworth, 
Michael Farnsworth, Sebastian Steinig

https://theconversation.com/dune-we-simulated-the-desert-planet-of-arrakis-to-see-if-humans-could-survive-there-170181
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Uncertainty in model projections of future climate

● Different socio-economic 
developments are 
represented by scenario 
uncertainty

● Multi-model assessments 
used to quantify model 
uncertainty

● The chaotic behavior of the 
climate system leads  to 
internal variability  Figure: Global mean, annual mean temperature change 

(relative to 1995-2014) from CMIP6. Brunner et al. (2020a)
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Distribution of uncertainty

● The contribution from each source is not 
constant over time

● The distribution of uncertainty also depends on 
a range of other parameters 

● Scenario uncertainty can be eliminated by 
making projections conditional to a scenario

● Internal variability can, for example, be 
investigated using so-called SMILEs

● Leaves us with model uncertainty... Figure: Fractional contribution to total 
uncertainty for 10-year running mean of 
global mean, annual mean temperature 
from CMIP6. Lehner et al. (2020)
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Known and unknown model uncertainty

● Model uncertainty arises when 
looking at multi-model 
ensembles

● Model uncertainty ≠ actual 
uncertainty (e.g., IPCC AR5 & 6)

○ there are processes not covered by 
any model (not considered here)

○ not all models are equally ‘good’
○ not all model are independent 

→ Here we look at uncertainty from 
model spread and how to best 
quantify it

Figure: Global mean, annual mean temperature change 
based on 39 CMIP6 models. The dashed brown lines 
indicate the 90% model range. IPCC AR6

very likely 
model range
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Not all models are equally ‘fit for purpose’

Figure: September Arctic sea ice extent in 
CMIP5 historical / RCP8.5 runs and 
observations. Massonnet et al. (2012)
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Not all models are equally ‘fit for purpose’

● we might want to trust models less if 
they are far away from observations
→ weighting by performance

● need a way to convert model- 
observation distance into weights

○ if we are very strict: strong weighting 
leaving us only with few models

○ if we are very generous: weak weighting 
not doing anything

● weights should be based on metrics 
relevant to the target

Figure: September Arctic sea ice extent in 
CMIP5 historical / RCP8.5 runs and 
observations. Massonnet et al. (2012)



Lukas Brunner et al. | 13

Not all models are independent

● Multi-model studies often draw on all 
available models

● the CMIP multi-model ensembles are not 
designed to only include independent 
models (‘ensembles of opportunity’)

○ Several models are closely related (one different 
component, resolution)

○ Models have been branched from each other
○ Some models share components

→ weighting by independence

Figure: Development and dependencies for 
several climate models. Edwards (2010)



Lukas Brunner et al. | 14

Putting it all together: calculation of model weights

● wi : weight for model i
● Di : generalised distance of model i to 

observations (performance 
diagnostics)

● σD : performance shape parameter
● M: number of models
● Sij : generalised distance between 

model pair (independence 
diagnostics)

● σS : independence shape parameter

Knutti et al. (2017)



Lukas Brunner et al. | 15

Recap: Introduction

● Projections of future climate by climate models have 
three main sources of uncertainty:

○ emission scenario uncertainty
○ model uncertainty
○ internal variability

● Here I focus on model uncertainty
● Weighting to better quantify model uncertainty

○ accounting for model dependencies (Part I)
○ downweighting models which are not ‘fit for purpose’ (Part II)

● Finally I check if things improved (Part III)
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Part I: Model Independence
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Structural model similarity can be inferred 
from model output similarity 

Model independence weighting: basic assumption
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Structural model similarity can be inferred 
from model output similarity 

● Models with multiple shared 
components have similar output (e.g. 
temperature climatologies)

● We can check this by looking at models 
which we know are similar

● Two variables are enough to 
cluster/separate models

Model independence weighting: basic assumption

Figure: Clustering of CMIP5 models based 
on mean temperature and sea level 
pressure. Merrifield et al. (2020)
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CMIP6 model ‘family tree’

● The tree structure on the right-hand side 
is only based on model output

● Model branching further to the left are 
closer to each other in output space

Figure: Model family tree for CMIP6, based on global 
temperature and sea level pressure. Brunner et al. (2020)



Lukas Brunner et al. | 20

CMIP6 model family tree

● The tree structure on the right-hand side 
is only based on model output

● Model branching further to the left are 
closer to each other in output space

● Label colors based on expert knowledge 
of model components

→ Models know to be similar are clustered 
together based on their output 

→ transfer generalised distance to 
independence weights (shape parameter)

Figure: Model family tree for CMIP6, based on global 
temperature and sea level pressure. Brunner et al. (2020)
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A look across CMIP generations

The clustering can also be used to

● track model development from CMIP5 to 
CMIP6 (including intermediate versions)

● investigate the importance of individual 
model components (atmosphere, land, etc.)

● investigate the importance of model 
resolution

Figure: Model family tree for CESM, 
based on global temperature and sea 
level pressure. 

Figure not 
available publicly
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Part II: Model Performance
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Model-observation distances

Figure: Generalized distance to observations (ERA5) 
for CMIP6 models. Based on 21-year climatology of 
temperature and precipitation. Brunner et al. (in prep)

Figure not 
available publicly
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Model-observation distances

● Model-observation distance can be based on 
○ different variables (temperature, precipitation, sea level pressure, …)
○ different time aggregations (climatology, variability, trend)
○ different geographical regions (that can differ from the target region)
○ time periods, observational datasets, resolutions, etc.

● Multiple metrics can be combined (generalized distance)

Figure: Generalized distance to observations (ERA5) 
for CMIP6 models. Based on 21-year climatology of 
temperature and precipitation. Brunner et al. (in prep)

● Reliable observations are needed as reference

Figure not 
available publicly
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Model-observation distances

● Model-observation distance can be based on 
○ different variables (temperature, precipitation, sea level pressure, …)
○ different time aggregations (climatology, variability, trend)
○ different geographical regions (that can differ from the target region)
○ time periods, observational datasets, resolutions, etc.

● Multiple metrics can be combined (generalized distance)

Figure: Generalized distance to observations (ERA5) 
for CMIP6 models. Based on 21-year climatology of 
temperature and precipitation. Brunner et al. (in prep)

● Reliable observations are needed as reference

● Weighting: metrics should be relevant for the target Figure not 
available publicly
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Model-observation distances across CMIP generations

Figure: Generalized distance to observations (ERA5). 
Based on 21-year climatology of temperature and 
precipitation. Brunner et al. (in prep)

Figure not 
available publicly
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Translating distances to weights: shape parameter

The shape parameter σD needs to 
be carefully chosen to provide 
confident and meaningful weights

● small values lead to strong 
weighting, selecting only a few 
models

● large values lead to equal 
weighting

→ model-as-truth test Figure: Weights for 33 CMIP6 models based on five 
performance and two independence metrics chosen 
for weighting global temperature. Brunner et al. (2020a)
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Effect of weighting CMIP6 projections of future climate

Figure: Global mean, annual mean temperature change 
(relative to 1995-2014) from 33 CMIP6. Brunner et al. (2020a)
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Effect of weighting CMIP6 projections of future climate

● The weighted distribution 
shows reduced mean 
warming from CMIP6 
models broadly consistent 
with other studies 

○ Nijsse et al. (2020)
○ Tokarska et al. (2020)
○ Ribes et al. (2021)

● Reduction of uncertainty by 
10%-20% for the likely range 
due to a constraining of the 
upper percentiles

Figure: Weighted global mean, annual mean temperature 
change (relative to 1995-2014) from 33 CMIP6 models. 
Brunner et al. (2020a)

weighted



Lukas Brunner et al. | 30

Recap: Performance and independence weighting

● Using the model range directly as uncertainty range disregards that
○ not all model are independent
○ not all models are equally ‘fit for purpose’

● Model weighting can help to account for that
● Distances are translated into weights assuming that

○ model similarity can be inferred from output similarity
○ future model performance can be inferred from past model performance

● The translation from distances to weights is done via two
shape parameters
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Part III: Does weighting improve future projections?
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Measuring the benefit of weighting climate models

From weather forecasting: “What Is a Good Forecast?” Murphy (1993)

● Accuracy: level of agreement between forecast and truth
● Skill: accuracy relative to a reference forecast
● Reliability: average agreement between forecasts and truth
● Sharpness: tendency of the forecast to predict specific values 

(counter-example: the climatology has no sharpness)

● Consistency: forecast is consistent with prior knowledge
● Value: degree to which the forecast helps decision makers

Quality
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Measuring the benefit of weighting climate models

What Is a Good Weighting? - we don’t know the ‘truth’

✘ Accuracy: level of agreement between weighted projection and ‘truth’
✘ Skill: accuracy relative to the unweighted projection
✘ Reliability: average agreement between weighted projections and ‘truth’
✔ Sharpness: tendency of the weighted projections to reduce model 

uncertainty compared to the unweighted projections

✔ Consistency: is weighting consistent with other methods
✔ Value: degree to which the weighted projection helps users
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Measuring the benefit of weighting climate models

✔ Consistency: quantify by comparing methods using a common setup 
(Brunner et al. 2020b, Hegerl et al. 2021, O’Reilly et al. in prep.)

✔ Accuracy, Skill, Reliability: we don’t know the true climate in the future and 
there will be only one realisation → model-as-truth approach

What Is a Good Weighting? - we don’t know the ‘truth’

✔ Sharpness: determined by the performance shape parameter σD: smaller σD 
leads to sharper results but might no longer be reliable 

✔ Value: determined by the users
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Consistency: comparing methods to constrain projections

No coordinated framework to compare 
methods exist. They might differ for a 
range of reasons independent of the 
methods itself:

● variable (temperature vs precip)
● region (global vs Europe)
● season and time period
● models included 
● uncertainties included
● ... 

Figures: Comparing (top) 
methods and (right) apples and 

oranges right: CC-BY M. Johnson
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A consistent framework for method comparison 

We brought together 8 groups 
working on constraining and 
developed a level playing field for 
comparison

2 conditions for participation:

1. quantify uncertainty in 
future projections

2. able to handle common 
settings

Table: Participating institutions, methods, and 
references. Brunner et al. (2020b)
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Comparing future Central European temperature change

● Trade-off between number of 
methods and the fairness of the 
comparison

● Fairest comparison: 
4/8 methods could participate 

● All methods narrow the 
uncertainty range 

● All methods agree on slightly less 
warming 

→ not all cases look that nice
Figure: Unconstrained (light) and constrained 
(dark) Central European summer temperature 
change (2041-60 relative to 1995-2014) from 
CMIP5. Brunner et al. (2020b)
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Take home messages

● Uncertainty in projections of future climate comes from
○ emission scenario uncertainty
○ climate model uncertainty
○ internal variability 

● Model spread can be translated to model uncertainty but
○ not all models are independent estimates of the future
○ not all models are equally ‘fit for purpose’

● Model weighting can help to account for this
● Model weighting is consistent with other methods 
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Thank you for your attention!
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