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Evolution of past and future climate

e [tis unequivocal that human
influence has warmed the
atmosphere, ocean and land.
(IPCC AR6 SPM)

e (global temperature until today has
increased by about 1°C compared
to pre-industrial conditions

e estimates of future warming are
based on climate models
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Figure: Global mean, annual mean temperature
anomalies (relative to 1851-1980) based on four
observational datasets. RealClimate/Gavin Schmidt, 15.1.22

*HadCRUT5: Jan-Nov mean for 2021
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Climate models and climate model projections

e A model is an informative Horzontal grid 7
representation of an object, e Zf?dii'ge
person or system. wiipedia ertcelghd ‘ t ers”

e Climate models simulate the
interactions of the important
drivers of climate. wikipedia

e Climate model are used to
o simulate historical climate
o understand (parts of) the climate
system and interactions
o project future climate
o etc...

Physical processes in a model

Atmosphere Solar Terrestrial
radiation radiation

Horizontal
exchange
between
columns

Figure: Schematic representation of a general
circulation model. Edwards (2011)
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What Climate models are used for

The world of Game of Thrones @ClimateSamwell
www.deepmip.org/sweet Surface Height (metres)

Smaller tilt -
weaker seasont

Large tilt -
strong seasons
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Uncertainty in model projections of future climate

6
Mean and likely (66%) range

e Different socio-economic — Gurssspiag e
developments are T )
represented by scenario
uncertainty

e Multi-model assessments
used to quantify model
uncertainty

e The chaotic behavior of the T
climate system leads to .

relative to 1995-2014

)

Temperature change (°C

T T T T T T
1980 2000 2020 2040 2060 2080 2100

internal variability Figure: Global mean, annual mean temperature change
(relative to 1995-2014) from CMIPG6. Brunner et al. (2020a)
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Distribution of uncertainty

e The contribution from each source is not
constant over time

e The distribution of uncertainty also depends on
a range of other parameters

e Scenario uncertainty can be eliminated by
making projections conditional to a scenario

e Internal variability can, for example, be
investigated using so-called SMILEs

e Leaves us with model uncertainty...
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Figure: Fractional contribution to total
uncertainty for 10-year running mean of
global mean, annual mean temperature
from CMIPBG. Lehner et al. (2020)
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e Model uncertainty arises when
looking at multi-model
ensembles

e Model uncertainty # actual
uncertainty (e.g., IPCC AR5 & 6)

o there are processes not covered by
any model (not considered here)

o not all models are equally ‘good’
not all model are independent

— Here we look at uncertainty from
model spread and how to best
quantify it

Known and unknown model uncertainty

GSAT anomaly rel. to 1995-2014 (°C)

—— CMIP6 historical ~—— HadCRUTS
—— CMIP6 SSP2-4.5 CanESMS5 internal variability
—— Emulator — DCPP

very likely’
model.range

GSAT anomaly rel. to 1850-1900 (°C)

-1

1850 1900 1950 2000
Year

2050 2100

Figure: Global mean, annual mean temperature change
based on 39 CMIP6 models. The dashed brown lines

indicate the 90% model range. IPcC AR6
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Not all models are equally ‘fit for purpose’

(b) September — Historical and RCP8.5
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Figure: September Arctic sea ice extent in

CMIP5 historical / RCP8.5 runs and
observations. Massonnet et al. (2012)
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Not all models are equally ‘fit for purpose’

we might want to trust models less if
they are far away from observations
— weighting by performance
need a way to convert model-

observation distance into weights
o if we are very strict: strong weighting
leaving us only with few models
o if we are very generous: weak weighting
not doing anything
weights should be based on metrics

relevant to the target
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Figure: September Arctic sea ice extent in
CMIPS5 historical / RCP8.5 runs and
observations. Massonnet et al. (2012)
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Not all models are independent

e Multi-model studies often draw on all
available models

e the CMIP multi-model ensembles are not
designed to only include independent

models (‘ensembles of opportunity’)
o Several models are closely related (one different
component, resolution)
Models have been branched from each other
o Some models share components

— weighting by independence

Figure: Development and dependencies for
several climate models. Edwards (2010)
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Putting it all together: calculation of model weights

Knutti et al. (2017)

w. : weight for model i

D. : generalised distance of model i to
observations (performance
diagnostics)

O, : performance shape parameter
M: number of models

Sij . generalised distance between
model pair (independence
diagnostics)

04 : independence shape parameter

Lukas Brunner et al. | 14
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Recap: Introduction

e Projections of future climate by climate models have

three main sources of uncertainty:

o emission scenario uncertainty
o model uncertainty
o internal variability

e Here | focus on model uncertainty
e \Weighting to better quantify model uncertainty

o accounting for model dependencies (Part I)
o downweighting models which are not ‘fit for purpose’ (Part Il)

e Finally | check if things improved (Part Ill)

Lukas Brunner et al. | 15
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Part |: Model Independence
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Model independence weighting: basic assumption

Structural model similarity can be inferred
from model output similarity
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Model independence weighting: basic assumption

Structural model similarity can be inferred  gios| f\we
= = . z @ MMMMMM * MPI-GE
from model output similarity Fuo| Jamee
e Models with multlple shared % oo S Qscs ‘ e
components have similar output (e.g. 2 o5 =
temperature climatologies) £ o s 4
£ S A
e We can check this by looking at models EIRES I B e,
which we know are similar oL - R . .
1012 1013 1014 1015 1016
° TWO variables are enough to Annual mean Northern Hemisphere SLP (hPa), 1950-2009
cluster/separate models Figure: Clustering of CMIPS models based

on mean temperature and sea level
pressure. Merrifield et al. (2020)
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is only based on model output anieasiz o)
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Figure: Model family tree for CMIPG, based on global rocess ) [
temperature and sea level pressure. Brunner et al. (2020) Giogt = 0250500 OB LU L2 lLoos LS
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CMIP6 model family tree

e The tree structure on the right-hand side
Is only based on model output

e Model branching further to the left are
closer to each other in output space

e Label colors based on expert knowledge
of model components

— Models know to be similar are clustered
together based on their output

— transfer generalised distance to
independence weights (shape parameter)

Figure: Model family tree for CMIP6, based on global
temperature and sea level pressure. Brunner et al. (2020)
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A look across CMIP generations

The clustering can also be used to

e track model development from CMIPS5 to
CMIP6 (including intermediate versions) Figure not

e investigate the importance of individual available publicly
model components (atmosphere, land, etc.)

e investigate the importance of model
resolution

Figure: Model family tree for CESM,
based on global temperature and sea
level pressure.
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Part Il: Model Performance
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Model-observation distances

Figure not

available pUbIICIy Figure: Generalized distance to observations (ERA5)

for CMIP6 models. Based on 21-year climatology of
temperature and precipitation. Brunner et al. (in prep)

Q Please don’t share Lukas Brunner et al. | 23
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Model-observation distances

e Model-observation distance can be based on

different variables (temperature, precipitation, sea level pressure, ...)
different time aggregations (climatology, variability, trend)

different geographical regions (that can differ from the target region)
time periods, observational datasets, resolutions, etc.

o O O O

e Multiple metrics can be combined (generalized distance)

e Reliable observations are needed as reference

Figure not

available pUbIICIy Figure: Generalized distance to observations (ERA5)

for CMIP6 models. Based on 21-year climatology of
temperature and precipitation. Brunner et al. (in prep)
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Model-observation distances

e Model-observation distance can be based on

different variables (temperature, precipitation, sea level pressure, ...)
different time aggregations (climatology, variability, trend)

different geographical regions (that can differ from the target region)
time periods, observational datasets, resolutions, etc.

o O O O

e Multiple metrics can be combined (generalized distance)

e Reliable observations are needed as reference

: e \Weighting: metrics should be relevant for the target
Figure not

available pUbIICIy Figure: Generalized distance to observations (ERA5)

for CMIP6 models. Based on 21-year climatology of
temperature and precipitation. Brunner et al. (in prep)
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Model-observation distances across CMIP generations

Figure not
available publicly

Figure: Generalized distance to observations (ERAS).
Based on 21-year climatology of temperature and

Q Please don’t share preC|p|tat|on. Brunner et al. (in prep) Lukas Brunner et al. | 26



» Lniversitat
wien

Translating distances to weights: shape parameter

== Equal weighting —e— Combined weight

The shape parameter o, needs to
be carefully chosen to provide
confident and meaningful weights

e small values lead to strong
weighting, selecting only a few
models

e |arge values lead to equal
weighting

Figure: Weights for 33 CMIP6 models based on five
performance and two independence metrics chosen
for weighting global temperature. Brunner et al. (2020a)

— model-as-truth test

Lukas Brunner et al. | 27
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Effect of weighting CMIP6 projections of future climate

T T T T
2020 2040 2060 2080

Figure: Global mean, annual mean temperature change
(relative to 1995-2014) from 33 CMIPB6. Brunner et al. (2020a)
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Effect of weighting CMIP6 projections of future climate

6

Mean and likely (66%) range
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Figure: Weighted global mean, annual mean temperature

change (relative to 1995-2014) from 33 CMIP6 models.

Brunner et al. (2020a)

The weighted distribution
shows reduced mean
warming from CMIP6
models broadly consistent

with other studies
o Nijsse et al. (2020)
o Tokarska et al. (2020)
o Ribes et al. (2021)

Reduction of uncertainty by
10%-20% for the likely range
due to a constraining of the
upper percentiles
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e Using the model range directly as uncertainty range disregards that
o not all model are independent
o not all models are equally ‘it for purpose’

e Model weighting can help to account for that

Distances are translated into weights assuming that

o model similarity can be inferred from output similarity
o future model performance can be inferred from past model performance

e The translation from distances to weights is done via two
shape parameters

Lukas Brunner et al. | 30
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Part Ill: Does weighting improve future projections?
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Measuring the benefit of weighting climate models

From weather forecasting: “What Is a Good Forecast?” murpny (1993)

e Accuracy: level of agreement between forecast and truth R

e Skill: accuracy relative to a reference forecast

e Reliability: average agreement between forecasts and truth > Quality

e Sharpness: tendency of the forecast to predict specific values
(counter-example: the climatology has no sharpness)

e Consistency: forecast is consistent with prior knowledge
e Value: degree to which the forecast helps decision makers

Lukas Brunner et al. | 32
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Measuring the benefit of weighting climate models

What Is a Good Weighting? - we don’t know the ‘truth’

Accuracy: level of agreement between weighted projection and ‘truth’
Skill: accuracy relative to the unweighted projection

Reliability: average agreement between weighted projections and ‘truth’
Sharpness: tendency of the weighted projections to reduce model
uncertainty compared to the unweighted projections

N X X X

Consistency: is weighting consistent with other methods
Value: degree to which the weighted projection helps users

AN

Lukas Brunner et al. | 33
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What Is a Good Weighting? - we don’t know the ‘truth’

v/ Sharpness: determined by the performance shape parameter o_: smaller o
leads to sharper results but might no longer be reliable
v/ Value: determined by the users

Consistency: quantify by comparing methods using a common setup
(Brunner et al. 2020b, Hegerl et al. 2021, O'Reilly et al. in prep.)

Accuracy, Skill, Reliability: we don’t know the true climate in the future and
there will be only one realisation — model-as-truth approach

Lukas Brunner et al. | 34
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Consistency: comparing methods to constrain projections

No coordinated framework to compare
methods exist. They might differ for a
range of reasons independent of the
methods itself:

variable (temperature vs precip)
region (global vs Europe)
season and time period

models included Figures: Comparing (top)

NPT methods and (right) apples and
Uncertalnt|es InC|Uded oranges right: CC-BY M. Johnson

SCIENTIFIC
REPORTS

OFEN Future continental summer
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A consistent framework for method comparison

We brought together 8 groups
working on constraining and
developed a level playing field for
comparison

2 conditions for participation:

1. quantify uncertainty in
future projections

2. able to handle common
settings

Method
Institution name acronym Method name References
ETH Zurich (Switzerland) ClimWIP Climate Model Weighting by Knutti et al. (2017b); Lorenz et al.
Independence and Performance (2018); Brunner et al. (2019)*
International Centre for Theoretical REA Reliability ensemble averaging Giorgi and Mearns (2002, 2003)"
Physics (Ttaly)
University of Edinburgh (United ASK Allen-Stott—Kettleborough Allen et al. (2000); Stott and
Kingdom) Kettleborough (2002); Kettleborough
et al. (2007)
Centre National de Recherches HistC Historically constrained Ribes et al. (2020, manuscript submitted
Meétéorologiques (France) probabilistic projections to Sci. Adv.)*
Met Office (United Kingdom) UKCP U K. Climate Projections (UKCP) Sexton et al. (2012); Harris et al. (2013);
Bayesian probabilistic Sexton and Harris (2015); Murphy
projections method et al. (2018)
University of Oxford (United Kingdom) CALL Calibrated large ensemble projections ~ O’Reilly et al. (2020)
Royal Netherlands Meteorological BNV’ Bootstrapped from natural variability ~ See the online supplemental material
Institute (Netherlands)
Fondazione Centro Euro-Mediterraneo  ENA" Ensemble analysis of See the online supplemental material

sui Cambiamenti Climatici (Ttaly)

probability distributions

“Source code available online (https:/github.com/lukasbrunner/ClimWIP).
P Source code available online (http:/doi.org/10.5281/zenodo.3890966).
€ Method tool available online (https:/saidqasmi.shinyapps.io/bayesian).

Table: Participating institutions, methods, and
references. Brunner et al. (2020b)
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Comparing future Central European temperature change

e Trade-off between number of
methods and the fairness of the
comparison

e Fairest comparison:

4/8 methods could participate

e All methods narrow the
uncertainty range

e All methods agree on slightly less
warming

— not all cases look that nice

Temperature change (°C)

Central European summer temperature change

ziﬁ?+

HistC ASK-ANT REA ClimwIpP

Figure: Unconstrained (light) and constrained
(dark) Central European summer temperature
change (2041-60 relative to 1995-2014) from
CMIPS5. Brunner et al. (2020b)
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Take home messages

e Uncertainty in projections of future climate comes from

o emission scenario uncertainty
o climate model uncertainty
o internal variability

e Model spread can be translated to model uncertainty but

o not all models are independent estimates of the future
o not all models are equally “fit for purpose’

e Model weighting can help to account for this
e Model weighting is consistent with other methods

Lukas Brunner et al. | 38
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Thank you for your attention!
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