
Weighting models by performance and independence 
Effects on projections of future climate
Lukas Brunner | Wegener Center Common Space | October 21st 2021 

With contributions from Reto Knutti, Ruth Lorenz, Angeline G. Pendergrass, Flavio Lehner, Anna L. 
Merrifield and many others



Lukas Brunner et al. | 2

What are climate models?

● A model is an informative 
representation of an object, 
person or system. Wikipedia

● Climate models simulate the 
interactions of the important 
drivers of climate. Wikipedia

● Climate model are used to
○ simulate historical climate
○ understand (parts of) the climate 

system and interactions
○ project future climate
○ etc... Figure: Schematic representation of a general 

circulation model. Edwards (2011)
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What are climate models used for?
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Why do we need reliable projections of future climate?

● Within science
○ investigation of feedbacks
○ regional studies
○ impact assessments

● Infrastructure planning
● Climate adaptation
● Climate mitigation decisions
● ...

Figure: Damaged water pipeline due to thawing 
permafrost in Norway. CC-BY-NC-ND Rakesh Rao / Climate Visuals 

Countdown 
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Uncertainty in model projections of future climate

● Different socio-economic 
developments are 
represented by scenario 
uncertainty

● Structural differences in 
models lead to model 
uncertainty

● The chaotic behavior of the 
climate system leads to 
internal variability  Figure: Global mean, annual mean temperature change 

(relative to 1995-2014) from CMIP6. Brunner et al. (2020a)
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Known and unknown model uncertainty

● Model uncertainty arises when 
looking at multi-model 
ensembles

● Model uncertainty ≠ actual 
uncertainty (e.g., IPCC AR5 & 6)

○ there might be process es not 
covered by any model (not 
considered here)

○ not all models are equally ‘good’
○ not all model are independent 

→ Here we look at uncertainty from 
model spread 

Figure: Global mean, annual mean temperature change 
based on 39 CMIP6 models. The dashed brown lines 
indicate the 90% model range. IPCC AR6

very likely 
model range
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Not all models are equally ‘fit for purpose’

Figure: September Arctic sea ice extent in 
CMIP5 historical / RCP8.5 runs and 
observations. Massonnet et al. (2012)
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Not all models are equally ‘fit for purpose’

● we might want to trust models less if 
they are far away from observations
→ weighting by performance

● need a way to convert model- 
observation distance into weights

○ if we are very strict: strong weighting 
leaving us only with few models

○ if we are very generous: weak weighting 
not doing anything

● weights should be based on metrics 
relevant to the target

Figure: September Arctic sea ice extent in 
CMIP5 historical / RCP8.5 runs and 
observations. Massonnet et al. (2012)
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Not all models are independent

● Multi-model studies often draw on all 
available models

● the CMIP multi-model ensembles are not 
designed to only include independent 
models (‘ensembles of opportunity’)

○ Several models are closely related (one different 
component, resolution)

○ Models have been branched from each other
○ Some models share components

→ weighting by independence

Figure: Development and dependencies for 
several climate models. Edwards (2010)
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Putting it all together: calculation of model weights

● wi : weight for model i
● Di : generalised distance of model i to 

observations (performance 
diagnostics)

● σD : performance shape parameter
● M: number of models
● Sij : generalised distance between 

model pair (independence 
diagnostics)

● σS : independence shape parameter

Knutti et al. (2017)
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Weighting model by performance: Westeros 

Di → ∞ (simulations from Westeros are 
pretty far away from observations on 
Earth)

e-∞
 = 0 → wi = 0

A model which simulates a climate very far 
away from what we observe gets weight 
zero.
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Weighting model by performance: Super model 

Di = 0 (a super model is perfectly 
simulating observations on earth)

e-0
 = 1 → wi = 1 (without independence)

A model which perfectly simulates Earth’s 
climate gets the highest weight of one.
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Weighting model by independence: Two identical models 

Sij = 0 (the distance of a model to a 
identical copy of itself is zero)

e-0
 = 1 → wi = 1/(1+1) = ½  (without 

performance)

If a multi-model ensemble contains the 
same model twice both instances get only 
half of the weight.
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Recap: Introduction

● Projections of future climate by climate models have 
three main sources of uncertainty:

○ emission scenario uncertainty
○ model uncertainty
○ internal variability

● Here I focus on model uncertainty
● Weighting to better quantify model uncertainty

○ accounting for model dependencies (Part I)
○ downweighting models which are not ‘fit for purpose’ (Part II)

● Finally I check if things improved (Part III)
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Part I: Model Independence
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Structural model similarity can be inferred 
from model output similarity 

● Models with multiple shared 
components have similar output (e.g. 
temperature climatologies)

● We can check this by looking at models 
which we know are similar

● Two variables are enough to 
cluster/separate models

Model independence weighting: basic assumption

Figure: Clustering of CMIP5 models based 
on mean temperature and sea level 
pressure. Merrifield et al. (2020)
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CMIP6 model family tree

● The tree structure on the right-hand side 
is only based on model output

● Model branching further to the left are 
closer to each other in output space

Figure: Model family tree for CMIP6, based on global 
temperature and sea level pressure. Brunner et al. (2020)
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CMIP6 model family tree

● The tree structure on the right-hand side 
is only based on model output

● Model branching further to the left are 
closer to each other in output space

● Label colors based on expert knowledge 
of model components

→ Models know to be similar are clustered 
together based on their output 

→ transfer generalised distance to 
independence weights (shape parameter)

Figure: Model family tree for CMIP6, based on global 
temperature and sea level pressure. Brunner et al. (2020)
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Part II: Model Performance
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Model-observation distances

Generalised distance (1)

Figure: Generalized distance to observations (ERA5) 
for CMIP6 models. Based on 21-year climatology of 
temperature and precipitation. Brunner et al. (in prep)
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Model-observation distances

● Model-observation distance can be based on 
○ different variables (temperature, precipitation, sea level pressure, …)
○ different time aggregations (climatology, variability, trend)
○ different geographical regions (that can differ from the target region)
○ time periods, observational datasets, resolutions, etc.

● Multiple metrics can be combined (generalized distance)

Generalised distance (1)

Figure: Generalized distance to observations (ERA5) 
for CMIP6 models. Based on 21-year climatology of 
temperature and precipitation. Brunner et al. (in prep)

● Reliable observations are needed as reference
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Model-observation distances

● Model-observation distance can be based on 
○ different variables (temperature, precipitation, sea level pressure, …)
○ different time aggregations (climatology, variability, trend)
○ different geographical regions (that can differ from the target region)
○ time periods, observational datasets, resolutions, etc.

● Multiple metrics can be combined (generalized distance)

Generalised distance (1)

Figure: Generalized distance to observations (ERA5) 
for CMIP6 models. Based on 21-year climatology of 
temperature and precipitation. Brunner et al. (in prep)

● Reliable observations are needed as reference

● Weighting: metrics should be relevant for the target 
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Detour: Distances across CMIP generations

Figure: Generalized distance to observations (ERA5). 
Based on 21-year climatology of temperature and 
precipitation. Brunner et al. (in prep)

CMIP2 (1997)

CMIP3 (2005)

CMIP5 (2010)

CMIP6 (2020)
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Translating distances to weights: shape parameter

The shape parameter σD needs to 
be carefully chosen to provide 
confident and meaningful weights

● small values lead to strong, 
selecting only a few models

● large values lead to equal 
weighting

→ model-as-truth test
Figure: Weights for 33 CMIP6 models based on five 
performance and two independence metrics chosen 
for weighting global temperature. Brunner et al. (2020a)
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Effect of weighting CMIP6 projections of future climate

Figure: Global mean, annual mean temperature change 
(relative to 1995-2014) from 33 CMIP6. Brunner et al. (2020a)
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Effect of weighting CMIP6 projections of future climate

● The weighted distribution 
shows reduced mean 
warming from CMIP6 
models broadly consistent 
with other studies 

○ Nijsse et al. (2020)
○ Tokarska et al. (2020)
○ Ribes et al. (2021)

● Reduction of uncertainty by 
10%-20% for the likely range 
due to a constraining of the 
upper percentiles

Figure: Weighted global mean, annual mean temperature 
change (relative to 1995-2014) from 33 CMIP6 models. 
Brunner et al. (2020a)

weighted
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Recap: Performance and independence weighting

● Using the model range directly as uncertainty range disregards that
○ not all model are independent
○ not all models are qualy ‘fit for purpose’

● Model weighting can help to account for that
● Distances are translated into weights assuming that

○ model similarity can be inferred from output similarity
○ future model performance can be inferred from past model performance

● The translation from distances to weights is done via two shape parameters



Lukas Brunner et al. | 28

Part III: Does weighting improve future projections?
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Measuring the benefit of weighting climate models

From weather forecasting: “What Is a Good Forecast?” (Murphy 1993)

● Accuracy: level of agreement between forecast and truth
● Skill: accuracy relative to a reference forecast
● Reliability: average agreement between forecasts and truth
● Sharpness: tendency of the forecast to predict specific values 

(counter-example: the climatology has no sharpness)

● Consistency: forecast is consistent with prior knowledge
● Value: degree to which the forecast helps decision makers

Quality
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Measuring the benefit of weighting climate models

What Is a Good Weighting? - we don’t know the ‘truth’

✘ Accuracy: level of agreement between weighted projection and ‘truth’
✘ Skill: accuracy relative to the unweighted projection
✘ Reliability: average agreement between weighted projections and ‘truth’
✔ Sharpness: tendency of the weighted projections to reduce model 

uncertainty compared to the unweighted projections

✔ Consistency: is weighting consistent with other methods
✔ Value: degree to which the weighted projection helps users
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Measuring the benefit of weighting climate models

✔ Consistency: quantify by comparing methods using a common setup 
(Brunner et al. 2020b, Hegerl et al. 2021, O’Reilly et al. in prep.)

✔ Accuracy, Skill, Reliability: we don’t know the true climate in the future and 
there will be only one realisation → model-as-truth approach

What Is a Good Weighting? - we don’t know the ‘truth’

✔ Sharpness: determined by the performance shape parameter σD: smaller σD 
leads to sharper results but might no longer be reliable 

✔ Value: determined by the users
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Consistency: comparing methods to constrain projections

No coordinated framework to compare 
methods exist. They might differ for a 
range of reasons independent of the 
methods itself:

● variable (temperature vs precip)
● region (global vs Europe)
● season and time period
● models included 
● uncertainties included
● ... 

Figures: Comparing (top) 
methods and (right) apples and 

oranges right: CC-BY M. Johnson
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A consistent framework for method comparison 

We brought together 8 groups 
working on constraining and 
developed a level playing field for 
comparison

2 conditions for participation:

1. quantify uncertainty in 
future projections

2. able to handle common 
settings

Table: Participating institutions, methods, and 
references. Brunner et al. (2020b)
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Comparing future Central European temperature change

● Trade-off between number of 
methods and the fairness of the 
comparison

● Fairest comparison: 
4/8 methods could participate 

● All methods narrow the 
uncertainty range 

● All methods agree on slightly less 
warming 

→ not all cases look that nice
Figure: Unconstrained (light) and constrained 
(dark) Central European summer temperature 
change (2041-60 relative to 1995-2014) from 
CMIP5. Brunner et al. (2020b)



Lukas Brunner et al. | 35

Take home messages

● Uncertainty in projections of future climate comes from
○ emission scenario uncertainty
○ climate model uncertainty
○ internal variability 

● Model spread can be translated to model uncertainty but
○ not all models are independent estimates of the future
○ not all models are equally ‘fit for purpose’

● Model weighting can help to account for this
● Weighting is consistent with other methods 
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Thank you for your attention!
Questions?
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Bonus Slides
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Distribution of uncertainty

● The contribution of each source of uncertainty 
depends on various parameters:

○ lead time
○ variable
○ region
○ models used

● Scenario uncertainty can be eliminated by 
making projections conditional to a scenario

● Internal variability can, for example, be 
investigated using so-called SMILEs

● Leaves us with model uncertainty...

Figure: Fractional contribution to total 
uncertainty for 10-year running mean of 
global mean, annual mean temperature 
from CMIP6. Lehner et al. (2020)
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Distribution of uncertainty - dependence on region
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Weighting regional summer temperature

● The effect of the weighting 
depends on the case

● Different set of models and 
relevant metrics for this case!

● For Mediterranean summer the 
weighted distribution shows 
stronger warming from CMIP5

● The interquartile range is reduced 
by about 24% by the end of the 
century 

Figure: Weighted Mediterranean summer 
temperature anomaly (relative to 1995-2014) 
based on 37 CMIP5 models (79 realizations). 
Brunner et al. (2019) 
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A common framework for method comparison

We brought together 8 groups working on 
constraining and developed shared settings:

● temperature and precipitation
● Europe, SREX regions, 4 grid points 
● summer (June, July, August)
● change in 2041-60 relative to 1995-2014
● CMIP5 models under RCP8.5
● same model pool (if possible)
● including 20-year internal variability
● median, 50%, and 80% range
● 2.5x2.5 horizontal resolution

Figure: Resolution, regions, and  sea 
mask. Brunner et al. (2020b)
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Projections for Central European summer temperature

Figure: Unconstrained and constrained change 
in Central European summer temperature. 
Brunner et al. (2020b)
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Projections for Central European summer temperature

Figure: Unconstrained and constrained change 
in Central European summer temperature. 
Brunner et al. (2020b)
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Projections for Central European summer temperature

Figure: Unconstrained and constrained change 
in Central European summer temperature. 
Brunner et al. (2020b)
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Projections for Central European summer temperature

Figure: Unconstrained and constrained change 
in Central European summer temperature. 
Brunner et al. (2020b)
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Projections for Central European summer temperature

Figure: Unconstrained and constrained change 
in Central European summer temperature. 
Brunner et al. (2020b)
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Projections for Central European summer temperature

Figure: Unconstrained and constrained change 
in Central European summer temperature. 
Brunner et al. (2020b)
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Projections for Central European summer temperature

Figure: Unconstrained and constrained change 
in Central European summer temperature. 
Brunner et al. (2020b)
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Projections for Central European summer temperature

● Most methods show a slightly lower 
constrained median warming 

● Most methods show a reduction in 
model spread

● More agreement in the central 
estimate than in extremes

● Different models used: 
unconstrained distributions differ 

Figure: Unconstrained and constrained change 
in Central European summer temperature. 
Brunner et al. (2020b)
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Central European temperature - same model subset

● Using the same 29 models
● Excludes some methods but 

starting distributions are now 
almost identical

● Methods consistently narrow the 
uncertainty range and agree on 
slightly less warming → not all 
cases look that nice

Figure: Unconstrained and constrained change 
in Central European summer temperature. 
Brunner et al. (2020b)
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Selection of the independence shape parameter 

Figure: Fraction of cases when the ‘truth’ is in the 5–95% range predicted by weighting all other models. 
Knutti et al. (2017)

wind = 1/(1+e0.25) ≈ 0.55  

Identical models 
(different only due to 
internal variability)

wind = 1/(1+e-1) ≈ 0.75  

Partly dependent models 

Mostly independent models 

wind = 1/(1+e-4) ≈ 0.98 

Merrifield et al. (2020)
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Validation of the independence weighting

How do the weights 
change if we add a 
model identical to a 
model already in the 
ensemble (apart from 
internal variability)?

Figure: Combined 
performance-independence 
weights, one member of MIROC6 
withheld (Brunner et al. 2020.)
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Validation of the independence weighting

How do the weights 
change if we add a 
model identical to a 
model already in the 
ensemble (apart from 
internal variability)?

Figure: Combined 
performance-independence 
weights, one member of MIROC6 
as separate model (Brunner et al. 
2020.)
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Validation of the independence weighting

Adding a model already 
in the ensemble can 
also affect multiple 
other models (if they 
are also dependent on 
it. 

Figure: Combined 
performance-independence 
weights, one member of MPI as 
separate model (Brunner et al. 
2020.)
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Model-observation distance metrics I

For each model the weight is calculated based on 
metrics defined as the euclidean distance for

● a variable (e.g., temperature, precipitation, etc.)
● in a period (e.g., 1979-2020)
● aggregated over time (e.g., mean,trend, etc.)
● in a region (e.g., global, Central Europe, etc.)
● with or without land/sea mask
● to a reference (one or multiple observations)

Figure: Example of a model- 
observation difference for the time 
mean precipitation in the period 
1995-2014 over European land. For 
the metric the field still needs to be 
aggregated to a single value.
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Model-observation distance metrics II

● For each model-observation pair d(lat, lon) 
the area-weighted root-mean-square 
error is calculated

● If different metrics k are used they are 
normalised and combined and can be 
assigned different importance
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Skill of the weighting for two examples

Figure: Temperature change for unweighted and weighted CMIP6 as well as the CMIP5 models serving as 
pseudo-observations. Cases with (a) decrease and (b) increase in skill. Brunner et al. (2020a)
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Skill of the weighting: CMIP5 models 

Weighting is applied to CMIP6 based on CMIP5 
models used as pseudo-observation 

● Weight based on pseudo observations (from a 
CMIP5 model) in the past

● Evaluation of ensemble forecast skill in the 
future (compared to same CMIP5 model) 

● Median skill increase: 10-20%
● Remaining risk of skill decrease through 

weighting

 
Figure: Temperature change for unweighted 

and weighted CMIP6 as well as the CMIP5 models
 serving as pseudo-observations. Brunner et al. (2020a)
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Model-as-truth testing

● Other names: perfect model test or using models 
as pseudo-observations.

● A similar concept in statistics is a leave-one-out 
cross-validation 

● The aim is to evaluate the skill and reliability of the 
weighting method in constraining a given model 
ensemble (e.g., CMIP6) by

○ ...weighting based on pseudo-observations (from another 
model - from CMIP6 or CMIP5) in the past

○ ...evaluating the weighting in the future against the ‘truth 
(from the same model) compared to the unweighted case

Figure: Continuous ranked 
probability skill score (CRPSS) 
for CMIP6 relative to the 
unweighted ensemble using 
perfect models from CMIP5. 
Brunner et al. (2020a)

Median skill increase: 10-20%
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Combining model-as-truth testing and method comparison

● Several methods provide individual skill 
estimates based on model-as-truth tests 
but they are not comparable

● Comparing method results can increase 
confidence (if they agree) but can tell us 
nothing about which method is ‘right’

● Coordinated model-as-truth test using 
a level playing field

Figure: RMSE, S/E, CRPS for five different methods based 
on a consistent model-as-truth test. O’Reilly et al. (in prep)
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Reliability of the weighting

The reliability of the weighting is ~100% in a model 
world by definition

● The performance shape parameter σD is selected 
to lead to reliable weighting based on a 
leave-one-out model-as-truth test

● Caveats:
○ all models might have common biases → overconfident in 

the real world
○ computationally expensive Figure: Fraction of cases when 

the ‘truth’ is in the 5–95% range 
predicted by weighting all other 
models. Knutti et al. (2017)
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Reliability of the weighting: model-as-truth test



Lukas Brunner et al. | 64

Reliability of the weighting: model-as-truth test

In the 
unweighted case 
we expect ~80% 
of perfect models 
to fall inside of the 
distribution
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Reliability of the weighting: model-as-truth test

The sigma must 
be chosen so that 
weighting does 
not decrease that 
value
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Weighting Transient Climate Response 

● A measure for a models transient 
response to a doubling of CO2

● Frequently used measure for the models’ 
climate sensitivity independent of time 

● Effect of weighting models (mean / 66%):
○ Unweighted: 2.01 (1.55-2.51)°C
○ Weighted: 1.87 (1.58-2.17)°C
○ Change: -0.14°C (-37.5%)

● Other studies (66% range):
○ Nijsse et al. (2020): 1.3°C-2.1°C
○ Tokarska et al. (2020): 1.2°C-2.0°C
○ Sherwood et al. (2020): 1.5°C-2.2°C


