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What are climate models?

e A model is an informative

Horizontal grid [
- . Latitude - longitude i .
representation of an object, - : “"' o
7 y/ between
person or system. wikipedia Meiecee, el s

e Climate models simulate the
interactions of the important
drivers of climate. wikipedia

e Climate model are used to

o simulate historical climate
o understand (parts of) the climate
system and interactions

o project future climate ) _ _
o etc Figure: Schematic representation of a general

circulation model. Edwards (2011)
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Physical processes in a model
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What are climate models used for?

The world of Game of Thrones @ClimateSamwell The Climate Of Middle Earth

www.deepmip.org/sweet Surface Height (metres)

Radagast the Brown'?

thosgobel, nr. Carrock, Mirkwood, Middle Earth.
2The Cabot Institute, University of Bristol, UK.
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Why do we need reliable projections of future climate?

e \Within science

o investigation of feedbacks -
o regional studies 78
o impact assessments

Infrastructure planning
Climate adaptation
Climate mitigation decisions

Figure: Damaged water pipeline due to thawing
permafrost in Norway. CC-BY-NC-ND Rakesh Rao / Climate Visuals

Countdown
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Uncertainty in model projections of future climate

6
Mean and likely (66%) range

e Different socio-economic — Gurssspiag e
developments are T -
represented by scenario
uncertainty

e Structural differences in
models lead to model
uncertainty

e The chaotic behavior of the T
climate system leads to .

internal variability Figure: Global mean, annual mean temperature change
(relative to 1995-2014) from CMIPG. Brunner et al. (2020a)

Lukas Brunneretal. | 5
BY

relative to 1995-2014

)

Temperature change (°C

T T T T T T
1980 2000 2020 2040 2060 2080 2100



Known and unknown model uncertainty

—— CMIP6 historical ~—— HadCRUTS

e Model uncertainty arises when = e e
3
looking at multi-model B
very likely

ensembles 2 modeélrange |’

e Model uncertainty # actual
uncertainty (e.g., IPCC AR5 & 6)

o there might be process es not
covered by any model (not
considered here)

o not all models are equally ‘good’

o not all model are independent v 1
_12850 1900 1950 2000 2050 2100
Year

GSAT anomaly rel. to 1995-2014 (°C)
GSAT anomaly rel. to 1850-1900 (°C)

— Here we look at uncertainty from _
Figure: Global mean, annual mean temperature change

model spread based on 39 CMIP6 models. The dashed brown lines
indicate the 90% model range. IPcC AR6
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Not all models are equally ‘fit for purpose’

. (b) September — Historical and RCP8.5
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Figure: September Arctic sea ice extent in
CMIPS5 historical / RCP8.5 runs and
observations. Massonnet et al. (2012)
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Not all models are equally ‘fit for purpose’

we might want to trust models less if
they are far away from observations
— weighting by performance
need a way to convert model-

observation distance into weights
o if we are very strict: strong weighting
leaving us only with few models
o if we are very generous: weak weighting
not doing anything
weights should be based on metrics

relevant to the target

Sea ice extent (10° km?)

(b) September — Historical and RCP8.5
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Figure: September Arctic sea ice extent in
CMIPS5 historical / RCP8.5 runs and
observations. Massonnet et al. (2012)
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Not all models are independent

GCRS GFDL

ANMRC BMRC
\\- NCAR CCM-0 A
~a

Phillips

e Multi-model studies often draw on all

H A -
available models e A e —
__, Directimport / /
or major influence

e the CMIP multi-model ensembles are not ’ -
designed to only include independent =

models (‘ensembles of opportunity’) s

o Several models are closely related (one different / L
component, resolution) i /\

Models have been branched from each other e —

o Some models share components e UKMO P T—

— weighting by independence ———————

Figure: Development and dependencies for
several climate models. Edwards (2010)
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Putting it all together: calculation of model weights

e w. :weight for model i

e D.:generalised distance of model i to
observations (performance
diagnostics)

e 0, : performance shape parameter

e M: number of models

o Sij . generalised distance between
model pair (independence
diagnostics)

e O, :independence shape parameter

Knutti et al. (2017)
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Weighting model by performance: Westeros

D. — « (simulations from Westeros are
pretty far away from observations on
Earth)

e”=0—-w =0

A model which simulates a climate very far
away from what we observe gets weight
zero.
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Weighting model by performance: Super model

D. = 0 (a super model is perfectly
simulating observations on earth)

e’=1— w, = 1 (without independence)

A model which perfectly simulates Earth’s
climate gets the highest weight of one.
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Weighting model by independence: Two identical models

Sij = 0 (the distance of a model to a
identical copy of itself is zero)

e’=1- w. = 1/(1+1) =2 (without
performance)

If a multi-model ensemble contains the
same model twice both instances get only
half of the weight.
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Recap: Introduction

e Projections of future climate by climate models have

three main sources of uncertainty:

o emission scenario uncertainty
o model uncertainty
o internal variability

e Here | focus on model uncertainty
e \Weighting to better quantify model uncertainty

o accounting for model dependencies (Part I)
o downweighting models which are not ‘fit for purpose’ (Part Il)

e Finally | check if things improved (Part Ill)
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Part I: Model Independence
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Model independence weighting: basic assumption

Structural model similarity can be inferred g5 f\ee
. . . z @M'ROCS * MPI-GE
from model output similarity Fuo| Jamee
_ _ S osi IR
e Models with multiple shared %, o Y :
components have similar output (e.g. % os C“‘f*fm1-'/ccsm%@;;;m-m«;;;jj”‘ GGGGGGGG "
temperature climatologies) £ o s 4
£ e e e
e We can check this by looking at models EIRCS - @ B .,
which we know are similar T - - : :
1012 1013 1014 1015 1016
P TWO variables are enough to Annual mean Northern Hemisphere SLP (hPa), 1950-2009
cluster/separate models Figure: Clustering of CMIP5 models based

on mean temperature and sea level
pressure. Merrifield et al. (2020)
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AWI-CM-1-1-MR (1)
NESM3 (2)

GFDL-ESM4 (1)

NorESM2-MM (1)

Is only based on model output

MRI-ESM2-0 (1)

ACCESS-CM2 (1)

closer to each other in output space

ACCESS-ESM1-5 (3)
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CNRM-ESM2-1 (5) :'—
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CNRM-CM6-1-HR (1)

CMIP6 model family tree iz an ) [
e The tree structure on the right-hand side commeanty [
e Model branching further to the left are Fedeins.ces3il ) %
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J

Figure: Model family tree for CMIP6, based on global
temperature and sea level pressure. Brunner et al. (2020)
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. MPI-ESM1-2-LR (10)

CMIP6 model family tree
AWI-CM-1-1-MR (1)

NESM3 (2)

GFDL-ESM4 (1)

CESM2 (2)

e The tree structure on the right-hand side B A )

NorESM2-MM (1)

is only based on model output I
e Model branching further to the left are e g
closer to each other in output space kace 106 0
e Label colors based on expert knowledge (<=0
of model components cAMS-CSML-0 (2)

— Models know to be similar are clustered ace-comm (b

MCM-UA-1-0 (1)

together based on their output

CNRM-CM6-1 (6)
CNRM-CM6-1-HR (1)

— transfer generalised distance to " Gecaial)
independence weights (shape parameter) = o
FGOALS-g3 (1)

Figure: Model family tree for CMIPG6, based on global ™"oc=>®
temperature and sea level pressure. Brunner et al. (2020)
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Part Il: Model Performance
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Model-observation distances

Figure: Generalized distance to observations (ERA5)
for CMIP6 models. Based on 21-year climatology of

temperature and precipitation. Brunner et al. (in prep)

SR e S TS L O B S N B0 e e S e 00 e R e i oA
, el GO THEACES 5SS ca TOAERO0DSE oris QZ( SIS TS Tl
e g b A e e A R

ST OWSWIW gLy
v OOMSHPEMEs FrisNTULPHL @ = <! hseO9h00 E
5 0000 FInENIBUZ0 s ELuOAnTESS ™ SZ02n00SM0BZ0AA20 =i

5=20m us w YSOHI oY NERS3LM WWos £ pudd SNeEs=sEask &
SHOY D= I Ns ST=" TZLPNHYO L T O, DO O= [G]
%) [w] s =2 Zi [rs L [ 0n g
= S T o0 m T UZ05pa <a %< olt-0 QW™
Hoap 2 £ g 24 DOgE= s o ws @ J%e F O

g o 6% i 927 %8 2

/T ] [&] -

s w

Lukas Brunner et al. | 20

Generalised distance (1)

Please don’t share

(\¥



Model-observation distances

==
ININ

e Model-observation distance can be based on

different variables (temperature, precipitation, sea level pressure, ...)
different time aggregations (climatology, variability, trend)

different geographical regions (that can differ from the target region)
time periods, observational datasets, resolutions, etc.

e Multiple metrics can be combined (generalized distance)
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Model-observation distances

e Model-observation distance can be based on

i different variables (temperature, precipitation, sea level pressure, ...)
different time aggregations (climatology, variability, trend)

different geographical regions (that can differ from the target region)
time periods, observational datasets, resolutions, etc.

Multiple metrics can be combined (generalized distance)
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e Reliable observations are needed as reference

e \Weighting: metrics should be relevant for the target
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Figure: Generalized distance to observations (ERA5)
e for CMIP6 models. Based on 21-year climatology of
g temperature and precipitation. Brunner et al. (in prep)
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Translating distances to weights: shape parameter

== Equal weighting —e— Combined weight

The shape parameter o needs to
be carefully chosen to provide
confident and meaningful weights

e small values lead to strong,
selecting only a few models
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— model-as-truth test
Figure: Weights for 33 CMIP6 models based on five

performance and two independence metrics chosen
for weighting global temperature. Brunner et al. (2020a)
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Effect of weighting CMIP6 projections of future climate

——————————

T T T T
2020 2040 2060 2080

Figure: Global mean, annual mean temperature change
(relative to 1995-2014) from 33 CMIP6. Brunner et al. (2020a)
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Effect of weighting CMIP6 projections of future climate

6

Mean and likely (66%) range

~—— CMIP6 unweighted ---- ERAS5

&= CMIP6 SSP1-2.6 weighted - MERRA2

514 = CMIP6 SSP5-8.5 weighted — BEST =

to 1995-2014

T T T T T T
1980 2000 2020 2040 2060 2080 2100

Figure: Weighted global mean, annual mean temperature

change (relative to 1995-2014) from 33 CMIP6 models.
Brunner et al. (2020a)

The weighted distribution
shows reduced mean
warming from CMIP6
models broadly consistent

with other studies
o Nijsse et al. (2020)
o Tokarska et al. (2020)
o Ribes et al. (2021)

Reduction of uncertainty by
10%-20% for the likely range
due to a constraining of the
upper percentiles
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Recap: Performance and independence weighting

e Using the model range directly as uncertainty range disregards that

o not all model are independent
o not all models are qualy ‘fit for purpose’

e Model weighting can help to account for that

e Distances are translated into weights assuming that

o model similarity can be inferred from output similarity
o future model performance can be inferred from past model performance

e The translation from distances to weights is done via two shape parameters
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Part Ill: Does weighting improve future projections?
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Measuring the benefit of weighting climate models

From weather forecasting: “What Is a Good Forecast?” (Murphy 1993)

Accuracy: level of agreement between forecast and truth R
Skill: accuracy relative to a reference forecast
Reliability: average agreement between forecasts and truth > Quality
Sharpness: tendency of the forecast to predict specific values
(counter-example: the climatology has no sharpness)

e Consistency: forecast is consistent with prior knowledge
e Value: degree to which the forecast helps decision makers
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Measuring the benefit of weighting climate models

What Is a Good Weighting? - we don’t know the ‘truth’

Accuracy: level of agreement between weighted projection and ‘truth’
Skill: accuracy relative to the unweighted projection

Reliability: average agreement between weighted projections and ‘truth’
Sharpness: tendency of the weighted projections to reduce model
uncertainty compared to the unweighted projections

N X X X

Consistency: is weighting consistent with other methods
Value: degree to which the weighted projection helps users

AN
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Measuring the benefit of weighting climate models

What Is a Good Weighting? - we don’t know the ‘truth’

v/ Sharpness: determined by the performance shape parameter o_: smaller o
leads to sharper results but might no longer be reliable
v/ Value: determined by the users

Consistency: quantify by comparing methods using a common setup
(Brunner et al. 2020b, Hegerl et al. 2021, O'Reilly et al. in prep.)

Accuracy, Skill, Reliability: we don’t know the true climate in the future and
there will be only one realisation — model-as-truth approach
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Consistency: comparing methods to constrain projections

No coordinated framework to compare
methods exist. They might differ for a

....................

range of reasons independent of the
methods itself:

variable (temperature vs precip)
region (global vs Europe)
season and time period

models included Figures: Comparing (top)

NPT methods and (right) apples and
Uncertalnt|es InC|Uded oranges right: CC-BY M. Johnson

h to climate change detection

...................

SCIENTIFIC
REPORTS

OPEN Future continental summer
ing constrained by the
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A consistent framework for method comparison

We brought together 8 groups
working on constraining and
developed a level playing field for
comparison

2 conditions for participation:

1. quantify uncertainty in
future projections

2. able to handle common
settings

Method
Institution name acronym Method name References
ETH Zurich (Switzerland) ClimWIP Climate Model Weighting by Knutti et al. (2017b); Lorenz et al.
Independence and Performance (2018); Brunner et al. (2019)*
International Centre for Theoretical REA Reliability ensemble averaging Giorgi and Mearns (2002, 2003)"
Physics (Ttaly)
University of Edinburgh (United ASK Allen-Stott—Kettleborough Allen et al. (2000); Stott and
Kingdom) Kettleborough (2002); Kettleborough
et al. (2007)
Centre National de Recherches HistC Historically constrained Ribes et al. (2020, manuscript submitted
Météorologiques (France) probabilistic projections to Sci. Adv.)*
Met Office (United Kingdom) UKCP U K. Climate Projections (UKCP) Sexton et al. (2012); Harris et al. (2013);

University of Oxford (United Kingdom) CALL

Royal Netherlands Meteorological BNV’
Institute (Netherlands)

Fondazione Centro Euro-Mediterranco  ENA"
sui Cambiamenti Climatici (Ttaly)

Bayesian probabilistic

projections method
Calibrated large ensemble projections
Bootstrapped from natural variability

Ensemble analysis of
probability distributions

Sexton and Harris (2015); Murphy
et al. (2018)

O'Reilly et al. (2020)

See the online supplemental material

See the online supplemental material

“Source code available online (https:/github.com/lukasbrunner/ClimWIP).
P Source code available online (http:/doi.org/10.5281/zenodo.3890966).
€ Method tool available online (https:/saidqasmi.shinyapps.io/bayesian).

Table: Participating institutions, methods, and
references. Brunner et al. (2020b)
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Comparing future Central European temperature change

e Trade-off between number of
methods and the fairness of the
comparison

e Fairest comparison:

4/8 methods could participate

e All methods narrow the
uncertainty range

e All methods agree on slightly less
warming

— not all cases look that nice

Temperature change (°C)

Central European summer temperature change

ziﬁ%+

1

HistC ASK-ANT REA ClimwIpP

Figure: Unconstrained (light) and constrained
(dark) Central European summer temperature
change (2041-60 relative to 1995-2014) from
CMIPS5. Brunner et al. (2020b)
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Take home messages

e Uncertainty in projections of future climate comes from

o emission scenario uncertainty
o climate model uncertainty
o internal variability

e Model spread can be translated to model uncertainty but

o not all models are independent estimates of the future
o not all models are equally “fit for purpose’

e Model weighting can help to account for this
e \NVeighting is consistent with other methods
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Thank you for your attention!
Questions?
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Distribution of uncertainty

e The contribution of each source of uncertainty

depends on various parameters:
o leadtime

o variable
o region
N Int. variability
© mO(.:JeIS used ) o I Scenario
e Scenario uncertainty can be eliminated by I Model
making projections conditional to a scenario 2020 2040 2060 2080
e Internal variability can, for example, be Time {¥ean
investigated using so-called SMILEs Flgure:_FractlonaI Contrlbutlpn to total
_ _ uncertainty for 10-year running mean of
e Leaves us with model uncertainty... global mean, annual mean temperature

from CMIPBG. Lehner et al. (2020)
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Distribution of uncertainty - dependence on region

(a) Global annual (b) Global annual H (c) Sahel JJA

decadal mean temperature decadal mean precipitation decadal mean precipitation

I Int. variability
I Scenario (CMIPS)
. Mode!

Int. var. range
— = Int. var. fixed

Fractional contribution to total uncertainty (%)

[ 0 0
2020 2040 2060 2080 2020 2040 2060 2080 2020 2040 2060 2080
“ %~ (e)Southern Ocean (f) Southern Europe
. (d) Seattle DJF I nnual decadal mean JJA temperature
% decadal mean precipitati o - (no decadal mean)

Fractional contribution to total uncertainty (%)

0 0 [
2020 2040 2060 2080 2020 2040 2060 2080 2020 2040 2060 2080
Time (year) Time (year) Time (year)

Figure 7. Sources of uncertainty from SMILEs (using scenario uncertainty from CMIP5) for different regions, seasons and variables. The
solid black lines indicate the borders between sources of uncertainty; the slightly transparent white shading around those lines is the range
of this estimate based on different SMILEs. The dashed line marks the dividing line if internal variability is assumed to stay fixed at its
1950-2014 multi-SMILE mean. All panels are for decadal mean projections, except (f) southern Europe June—August temperature, to which
no decadal mean has been applied.
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Weighting regional summer temperature

e The effect of the weighting
depends on the case

e Different set of models and
relevant metrics for this case!

e For Mediterranean summer the
weighted distribution shows
stronger warming from CMIP5

e The interquartile range is reduced
by about 24% by the end of the
century

Temperature anomaly (°C)

8 1 &= Mean & interquartile

—— Weighted mean & interquartile
—— Best 3 models

4+ —— Worst 3 models

- QObservations full range

mid-century end-of-century

1960 1980 2000 2020 2040 2060 2080 2100

Figure: Weighted Mediterranean summer
temperature anomaly (relative to 1995-2014)

based on 37 CMIP5 models (79 realizations).
Brunner et al. (2019)
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A common framework for method comparison

70

o 00
gl ™ g R 000
P 500" 0000
: 000
9 0Q000
e ; 08Q00 o

0000 000
00
40 — © 6

o 100000

30

«
L

Figure: Resolution, regions, and sea

mask. Brunner et al. (2020b)

We brought together 8 groups working on
constraining and developed shared settings:

temperature and precipitation

Europe, SREX regions, 4 grid points
summer (June, July, August)

change in 2041-60 relative to 1995-2014
CMIP5 models under RCP8.5

same model pool (if possible)

including 20-year internal variability
median, 50%, and 80% range

2.5x2.5 horizontal resolution
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Projections for Central European summer temperature

Central European temperature change 2041-2060 minus 1995-2014

p90 .
p75 Constrained
=— Unconstrained

P50 -

p25
pl0

Temperature change (°C)

0 Estimate of 20-year internal variability from observations

| Graphic: Lukas Brunner (@Iuki_brunner)
T T T T T T

Figure: Unconstrained and constrained change

in Central European summer temperature.
Brunner et al. (2020b)
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Projections for Central European summer temperature

Central European temperature change 2041-2060 minus 1995-2014
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& Figure: Unconstrained and constrained change

in Central European summer temperature.
Brunner et al. (2020b)
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Projections for Central European summer temperature

Central European temperature change 2041-2060 minus 1995-2014
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Projections for Central European summer temperature

Central European temperature change 2041-2060 minus 1995-2014
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Figure: Unconstrained and constrained change
in Central European summer temperature.

Brunner et al. (2020b)
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Projections for Central European summer temperature

Central European temperature change 2041-2060 minus 1995-2014
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Projections for Central European summer temperature

Central European temperature change 2041-2060 minus 1995-2014
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Projections for Central European summer temperature

Central European temperature change 2041-2060 minus 1995-2014
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Projections for Central European summer temperature

Central European temperature change 2041-2060 minus 1995-2014

T3 L comsrames rercenic e Most methods show a slightly lower

N | constrained median warming
T =| e Most methods show a reduction in
2‘;23 _ B = model spread
jz . * #**? = | e More agreement in the central
;| — 0 estimate than in extremes
N ' | . e Different models used:

e e unconstrained distributions differ
0] catimote o 20-year ntematvariabitty from abservatons
Crepe-Coes Branver T@hor Bromen

AI éol N \/l O L Loy & K &\IK\IK\ . . .
TEE T I ESE $FF Figure: Unconstrained and constrained change
& < e in Central European summer temperature.

Brunner et al. (2020b)

Lukas Brunner et al. | 50
BY



Central European temperature - same model subset

Central European summer temperature change

ziﬁ?+

HistC ASK-ANT REA ClimwIpP

e Using the same 29 models

e Excludes some methods but
starting distributions are now
almost identical

e Methods consistently narrow the
uncertainty range and agree on
slightly less warming — not all
cases look that nice

Temperature change (°C)

Figure: Unconstrained and constrained change

in Central European summer temperature.
Brunner et al. (2020b)
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Selection of the independence shape parameter

CMIPS =

L
]
CESM1.2.2-LE < Hi

— -1\ ~
CanESM2-LE = Wipg = 1/(1+e7) = 0.75 W, = 1/(1+e*) = 0.98 -
MPI-GE 4 Hi— -=== 0s=0.22 -
: T | T T T T
0 § 0.2 0:4 0.6 0.8 1 1.2 1.4
— 2 —~ : :
Wia~= 1/(1 +e° 5) ~0.55 RMSE distance between model i and model j (S;,)

€«

A
>

Identical models : :
(different only due to < >
internal variability)  : Partly dependent models

Mostly independent models

Merrifield et al. (2020)
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Validation of the independence weighting

(a) Weights per model (without MIROC6-rlilp1f1)

F+0%

F-17%

F-33%

F-50%

0.12 A
0.10 A
0.08
£
o0
g0.0G-
0.04
____________________________________________________ === Equal weighting ———
=—@— Original combined weight
0.02
0.00
— T T T —— T T T—T—T—T
> O 9 S Y & o © © [CRENS S o 5 O o & o
g<w@§w§$«a’3é’w§s7’3§§w’~w€v(§§ﬁ”§$¢o$9§'§§
G oGNS NS S O N S T T STl IS LS
VIS FTO T E IO ISFIIFTIIGF S
EEELEETSEGITETESEESS §59 ¢85€°¢
g &F g & LR C 7 @ S S @
S $ S v@‘b < $b (‘_f/ (f \Z:D}%’

Weight change (%)

How do the weights
change if we add a
model identical to a
model already in the
ensemble (apart from
internal variability)?

Figure: Combined
performance-independence
weights, one member of MIROCG6
withheld (Brunner et al. 2020.)
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Validation of the independence weighting

0.12

0.10 +

(a) Weights per model, MIROC6

-rlilplfl as separate model

F+0%

F-17%

F-33%

F-50%

0.08 A
=
.20
é‘) 0.06
B Change in combined weight (right axis)
0.04 4 === Equal weighting
=@ Original combined weight
———————————————————————————————————————————————— Original performance; independence with -
MIROC6-r1ilplfl as separate model
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Weight change (%)

How do the weights
change if we add a
model identical to a
model already in the
ensemble (apart from
internal variability)?

Figure: Combined
performance-independence
weights, one member of MIROCG6
as separate model (Brunner et al.
2020.)
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Validation of the independence weighting

(b) Weights per model, MPI-ESM1-2-HR-rlilp1fl as separate model

0.08

Weight (1)

0.06

0.04 A

0.02 A

F+0%

F-17%

F-33%

F-50%

Weight change (%)

Adding a model already
in the ensemble can
also affect multiple
other models (if they
are also dependent on
it.

Figure: Combined
performance-independence
weights, one member of MPI as
separate model (Brunner et al.
2020.)
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Model-observation distance metrics |

For each model the weight is calculated based on
metrics defined as the euclidean distance for

a variable (e.g., temperature, precipitation, etc.)
in a period (e.g., 1979-2020)

aggregated over time (e.g., mean,trend, etc.)

in a region (e.g., global, Central Europe, etc.)
with or without land/sea mask

to a reference (one or multiple observations)

ACCESS1-0_rlilpl: prCLIM 1995-2014
83.75°N : ) . . .

gagsend iiiiiiiiTTiTIiiiiiin
eazsend il e R

53.75°N 9 ¢ R S

43.75°NA{ -

33758 ] T e I

23.75°N T T T T T T
16.25°\W.25°W3.75°E13.75°E3.75°B3.75°83.75°63.75°E

—1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
pr

Figure: Example of a model-
observation difference for the time
mean precipitation in the period
1995-2014 over European land. For
the metric the field still needs to be
aggregated to a single value.
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Model-observation distance metrics |l

e For each model-observation pair d(lat, lon)  _  [2.at 2100 W(lat, lon) d(lat, lon)?
the area-weighted root-mean-square >_lat 2_lon W(lat, lon)
error IS Calculated ACCESS1-0_rlilpl: prCLIM 1995-2014

999999
7777777
63.75°N{ -

5375°N{ -

43.75°N ] ceadis

e If different metrics k are used they are Pt i ™
i i BT 00 .
normalised and combined and can be S T

assigned different importance

1 WkAk
Dioial = —
total Zk Wi zk: Ak
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Skill of the weighting for two examples

(a) Combined weighting based on pseudo-observations from MIROC-ESM (CMIP5)

(b) Combined weighting based on pseudo-observations from MPI-ESM-LR (CMIP5)

---~- Pseudo-observation: historical and RCP2.6

-=-- Pseudo-observation: historical and RCP8.5
CMIP6 mean and 66 % range unweighted

= CMIP6 SSP1-2.6 mean and 66% range weighted

2
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Figure: Temperature change for unweighted and weighted CMIP6 as well as the CMIP5 models serving as
pseudo-observations. Cases with (a) decrease and (b) increase in skill. Brunner et al. (2020a)
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] [] (]
h h [ I '
S kI I I Of t e We I g tl l I g C M I 5 I I I Od e I S Combined weighting based on pseudo-observations from CMIP5
[
bee-csml-1 __|bcc-csml-1-m A -| CanESM2
10.4%: 228% 7 J17.3%: 15.3% 7 41% 8.6% P s02%: 117%
13.9%; 16.6% T 17.3%: 16.3% S |15.1%: 18.8% Y 15.6%; 7.2%
) y

Weighting is applied to CMIP6 based on CMIP5
models used as pseudo-observation

e \Weight based on pseudo observations (from a
CMIP5 model) in the past

e Evaluation of ensemble forecast skill in the
future (compared to same CMIP5 model)

e Median skill increase: 10-20%

e Remaining risk of skill decrease through
weighting

Temperature change (°C) relative to 1995-2014

Figure: Temperature change for unweighted | 55 #5755 s
and weighted CMIP6 as well as the CMIP5 models = =& = s i i e R

serving as pseudo-observations. Brunner et al. (2020a)
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Model-as-truth testing 20%
dian skill increase: 10-

Me
e Other names: perfect model test or using models =
as pseudo-observations. o
e Asimilar concept in statistics is a leave-one-out 2’ - ﬁ = ;
cross-validation N L=
e The aim is to evaluate the skill and reliability of the |
weighting method in constraining a given model N s
ensemble (e.g., CMIPG6) by Figure: Continuous ranked
o ...weighting based on pseudo-observations (from another probability skill score (CRPSS)

for CMIPG6 relative to the

model - from CMIP6 or CMIP5) in the past . :
luating th iahting in the fut inst the ‘truth unweighted ensemble using
o ...evaluating the weighting in the future agalns. e ‘tru perfect models from CMIP5.
(from the same model) compared to the unweighted case Brunner et al. (2020a)
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Combining model-as-truth testing and method comparison

TAS-JJA verification (Method A, Method B, Method C, Method D, Method E & Multi-method Projection)

e Several methods provide individual skill

1k

estimates based on model-as-truth tests ol
but they are not comparable |
e Comparing method results can increase
confidence (if they agree) but can tell us
nothing about which method is ‘right’
e Coordinated model-as-truth test using |

a level playing field

06

X 04t

02}

Figure: RMSE, S/E, CRPS for five different methods based
on a consistent model-as-truth test. o'Rreilly et al. (in prep)
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Reliability of the weighting

’_/-’ﬂ_/_—

equal weighting

The reliability of the weighting is ~100% in a model
world by definition

0.8

0.6

e The performance shape parameter o is selected

Fraction of perfect model tests inside 90% range

to lead to reliable weighting based on a os ]/ /€
leave-one-out model-as-truth test I/ /&
0.2
e Caveats: ]
o all models might have common biases — overconfident in 00 T T T T T T
01 02 03 04 05 06 07 08 09 1
the real W0r|d Parameter for weighting performance o,
o computationally expensive Figure: Fraction of cases when

the ‘truth’ is in the 5-95% range
predicted by weighting all other
models. Knutti et al. (2017)
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Reliability of the weighting: model-as-truth test

Multi-model ensemble
¥

Remove multiple model variants

[Iterate over sigmas}

Remove “perfect model” and

use it to calculate weights

v
Test if it lies in the 80 % range

of weighted distribution

v
Test if this is true for at least

80 % of “perfect models”
!’

Select smallest sigmas for which this is fulfilled

[Iterate over models]—»
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Reliability of the weighting: model-as-truth test

Multi-model ensemble

¥

Remove multiple model variants

[Iterate over sigmas}

[Iterate over models}»

Remove “perfect model” and
use it to calculate weights

v

Test if it lies in the 80 % range
of weighted distribution

Temperature an
|

80% spread unweighted
80% sprea d weighte d
—— Perfect model

v

Test if this is true for at least
80 % of “perfect models”

¥

Select smallest sigmas for which this is fulfilled

to 1995-2014

nomaly (°C) relative

Temperature a
|

1960 1980 2000 2020 2040 2060 2080 2100

In the
unweighted case
we expect ~80%
of perfect models
to fall inside of the
distribution
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Reliability of the weighting: model -as- truth test

4
Slgm too lar
effect o th d stributiol

Multi-model ensemble
Y j
Remove multiple model variants | - -

[Iterate over Sig maS} f 1960 1980 WNZ;;:Q 2020 2040 2060 zo::mm:loo The S|g ma must
Remove “perfect model” and : ' be chosen so that

; : . weighting does
use it to caIcIJIate weights not decrease that

value
Test if it lies in the 80 % range
of weighted distribution

[Iterate over models}»

Temperature an
|

v .
Test if this is true for at least | . | o
80 % of “perfect models” T r T
Y :

nomaly (°C) rel

Select smallest sigmas for which this is fulfilled

Temperature a

1960 1980 2000 2020 2040 2060 2080 2100
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Weighting Transient Climate Response

5.00 CMIP6 Transent Climate Responce

« NESM3
« UKESM1-0-LL

«CanESM5 .\ ESM5-CanOE
EC-Earth3-Veg o

MIROCS
@cccsM2-MR

. INM-CM5-0
T NoESMZMMe o/NM-CM4-8

1.25 4 Mean, 66%, 90%

== Unweighted
B Weighted

Animation CC BY @luki_brunner

A measure for a models transient
response to a doubling of CO,
Frequently used measure for the models’
climate sensitivity independent of time

Effect of weighting models (mean / 66%):
o Unweighted: 2.01 (1.55-2.51)°C
o Weighted: 1.87 (1.58-2.17)°C
o Change: -0.14°C (-37.5%)
Other studies (66% range):
o Nijsse et al. (2020): 1.3°C-2.1°C
o Tokarska et al. (2020): 1.2°C-2.0°C
o Sherwood et al. (2020): 1.5°C-2.2°C
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